Raikov's theorem
In probability theory, Raikov’s theorem, named after Dmitry Raikov, states that if the sum of two independent non-negative random variables X and Y has a Poisson distribution, then both X and Y themselves must have the Poisson distribution.[1][2][3] It says the same thing about the Poisson distribution that Cramér's theorem says about the normal distribution. It can readily be shown by mathematical induction that the same is true of the sum of more than two independent random variables.
Notes and references
- ↑ D. Raikov (1937). "On the decomposition of Poisson laws". C. R. (Doklady) Academy of Sciences of URSS. 14: 9–11.
- ↑ Johnson, N.L., Kotz, S., Kemp, A.W. (1993) Univariate Discrete Distributions, Wiley. p. 173 ISBN 0-471-54897-9
- ↑ Galambos, Janos (2006) Raikov's theorem, in Encyclopedia of Statistical Sciences, Wiley. doi:10.1002/0471667196.ess2160.pub2
This article is issued from
Wikipedia.
The text is licensed under Creative Commons - Attribution - Sharealike.
Additional terms may apply for the media files.