RABEP1
Rab GTPase-binding effector protein 1 is an enzyme that in humans is encoded by the RABEP1 gene.[5][6] It belongs to rabaptin protein family.
Interactions
RABEP1 has been shown to interact with:
References
- 1 2 3 GRCh38: Ensembl release 89: ENSG00000029725 - Ensembl, May 2017
- 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000020817 - Ensembl, May 2017
- ↑ "Human PubMed Reference:".
- ↑ "Mouse PubMed Reference:".
- 1 2 Stenmark H, Vitale G, Ullrich O, Zerial M (Nov 1995). "Rabaptin-5 is a direct effector of the small GTPase Rab5 in endocytic membrane fusion". Cell. 83 (3): 423–32. PMID 8521472. doi:10.1016/0092-8674(95)90120-5.
- ↑ "Entrez Gene: RABEP1 rabaptin, RAB GTPase binding effector protein 1".
- 1 2 3 Mattera R, Arighi CN, Lodge R, Zerial M, Bonifacino JS (Jan 2003). "Divalent interaction of the GGAs with the Rabaptin-5-Rabex-5 complex". The EMBO Journal. 22 (1): 78–88. PMC 140067 . PMID 12505986. doi:10.1093/emboj/cdg015.
- ↑ Nogi T, Shiba Y, Kawasaki M, Shiba T, Matsugaki N, Igarashi N, Suzuki M, Kato R, Takatsu H, Nakayama K, Wakatsuki S (Jul 2002). "Structural basis for the accessory protein recruitment by the gamma-adaptin ear domain". Nature Structural Biology. 9 (7): 527–31. PMID 12042876. doi:10.1038/nsb808.
- 1 2 Vitale G, Rybin V, Christoforidis S, Thornqvist P, McCaffrey M, Stenmark H, Zerial M (Apr 1998). "Distinct Rab-binding domains mediate the interaction of Rabaptin-5 with GTP-bound Rab4 and Rab5". The EMBO Journal. 17 (7): 1941–51. PMC 1170540 . PMID 9524117. doi:10.1093/emboj/17.7.1941.
- ↑ Xiao GH, Shoarinejad F, Jin F, Golemis EA, Yeung RS (Mar 1997). "The tuberous sclerosis 2 gene product, tuberin, functions as a Rab5 GTPase activating protein (GAP) in modulating endocytosis". The Journal of Biological Chemistry. 272 (10): 6097–100. PMID 9045618. doi:10.1074/jbc.272.10.6097.
- ↑ Valsdottir R, Hashimoto H, Ashman K, Koda T, Storrie B, Nilsson T (Nov 2001). "Identification of rabaptin-5, rabex-5, and GM130 as putative effectors of rab33b, a regulator of retrograde traffic between the Golgi apparatus and ER". FEBS Letters. 508 (2): 201–9. PMID 11718716. doi:10.1016/s0014-5793(01)02993-3.
Further reading
- Xiao GH, Shoarinejad F, Jin F, Golemis EA, Yeung RS (Mar 1997). "The tuberous sclerosis 2 gene product, tuberin, functions as a Rab5 GTPase activating protein (GAP) in modulating endocytosis". The Journal of Biological Chemistry. 272 (10): 6097–100. PMID 9045618. doi:10.1074/jbc.272.10.6097.
- Vitale G, Rybin V, Christoforidis S, Thornqvist P, McCaffrey M, Stenmark H, Zerial M (Apr 1998). "Distinct Rab-binding domains mediate the interaction of Rabaptin-5 with GTP-bound Rab4 and Rab5". The EMBO Journal. 17 (7): 1941–51. PMC 1170540 . PMID 9524117. doi:10.1093/emboj/17.7.1941.
- Neve RL, Coopersmith R, McPhie DL, Santeufemio C, Pratt KG, Murphy CJ, Lynn SD (Oct 1998). "The neuronal growth-associated protein GAP-43 interacts with rabaptin-5 and participates in endocytosis". The Journal of Neuroscience. 18 (19): 7757–67. PMID 9742146.
- Swanton E, Bishop N, Woodman P (Dec 1999). "Human rabaptin-5 is selectively cleaved by caspase-3 during apoptosis". The Journal of Biological Chemistry. 274 (53): 37583–90. PMID 10608812. doi:10.1074/jbc.274.53.37583.
- Nagelkerken B, Van Anken E, Van Raak M, Gerez L, Mohrmann K, Van Uden N, Holthuizen J, Pelkmans L, Van Der Sluijs P (Mar 2000). "Rabaptin4, a novel effector of the small GTPase rab4a, is recruited to perinuclear recycling vesicles". The Biochemical Journal. 346 (3): 593–601. PMC 1220890 . PMID 10698684. doi:10.1042/0264-6021:3460593.
- Hirst J, Lui WW, Bright NA, Totty N, Seaman MN, Robinson MS (Apr 2000). "A family of proteins with gamma-adaptin and VHS domains that facilitate trafficking between the trans-Golgi network and the vacuole/lysosome". The Journal of Cell Biology. 149 (1): 67–80. PMC 2175106 . PMID 10747088. doi:10.1083/jcb.149.1.67.
- Korobko IV, Korobko EV, Kiselev SL (Nov 2000). "The MAK-V protein kinase regulates endocytosis in mouse". Molecular & General Genetics. 264 (4): 411–8. PMID 11129044. doi:10.1007/s004380000293.
- Zhu Y, Doray B, Poussu A, Lehto VP, Kornfeld S (Jun 2001). "Binding of GGA2 to the lysosomal enzyme sorting motif of the mannose 6-phosphate receptor". Science. 292 (5522): 1716–8. PMID 11387476. doi:10.1126/science.1060896.
- Valsdottir R, Hashimoto H, Ashman K, Koda T, Storrie B, Nilsson T (Nov 2001). "Identification of rabaptin-5, rabex-5, and GM130 as putative effectors of rab33b, a regulator of retrograde traffic between the Golgi apparatus and ER". FEBS Letters. 508 (2): 201–9. PMID 11718716. doi:10.1016/S0014-5793(01)02993-3.
- de Renzis S, Sönnichsen B, Zerial M (Feb 2002). "Divalent Rab effectors regulate the sub-compartmental organization and sorting of early endosomes". Nature Cell Biology. 4 (2): 124–33. PMID 11788822. doi:10.1038/ncb744.
- Mattera R, Arighi CN, Lodge R, Zerial M, Bonifacino JS (Jan 2003). "Divalent interaction of the GGAs with the Rabaptin-5-Rabex-5 complex". The EMBO Journal. 22 (1): 78–88. PMC 140067 . PMID 12505986. doi:10.1093/emboj/cdg015.
- Mattera R, Puertollano R, Smith WJ, Bonifacino JS (Jul 2004). "The trihelical bundle subdomain of the GGA proteins interacts with multiple partners through overlapping but distinct sites". The Journal of Biological Chemistry. 279 (30): 31409–18. PMID 15143060. doi:10.1074/jbc.M402183200.
- Jin J, Smith FD, Stark C, Wells CD, Fawcett JP, Kulkarni S, Metalnikov P, O'Donnell P, Taylor P, Taylor L, Zougman A, Woodgett JR, Langeberg LK, Scott JD, Pawson T (Aug 2004). "Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization". Current Biology. 14 (16): 1436–50. PMID 15324660. doi:10.1016/j.cub.2004.07.051.
- Kimura K, Wakamatsu A, Suzuki Y, Ota T, Nishikawa T, Yamashita R, Yamamoto J, Sekine M, Tsuritani K, Wakaguri H, Ishii S, Sugiyama T, Saito K, Isono Y, Irie R, Kushida N, Yoneyama T, Otsuka R, Kanda K, Yokoi T, Kondo H, Wagatsuma M, Murakawa K, Ishida S, Ishibashi T, Takahashi-Fujii A, Tanase T, Nagai K, Kikuchi H, Nakai K, Isogai T, Sugano S (Jan 2006). "Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes". Genome Research. 16 (1): 55–65. PMC 1356129 . PMID 16344560. doi:10.1101/gr.4039406.
- Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O'Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Duewel HS, Stewart II, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B, Kinach R, Adams SL, Moran MF, Morin GB, Topaloglou T, Figeys D (2007). "Large-scale mapping of human protein-protein interactions by mass spectrometry". Molecular Systems Biology. 3 (1): 89. PMC 1847948 . PMID 17353931. doi:10.1038/msb4100134.
This article is issued from
Wikipedia.
The text is licensed under Creative Commons - Attribution - Sharealike.
Additional terms may apply for the media files.