Quotient of subspace theorem

In mathematics, the quotient of subspace theorem is an important property of finite-dimensional normed spaces, discovered by Vitali Milman.[1]

Let (X, ||·||) be an N-dimensional normed space. There exist subspaces Z  Y  X such that the following holds:

is uniformly isomorphic to Euclidean. That is, there exists a positive quadratic form ("Euclidean structure") Q on E, such that

for

with K > 1 a universal constant.

The statement is relative easy to prove by induction on the dimension of Z (even for Y=Z, X=0, c=1) with a K that depends only on N; the point of the theorem is that K is independent of N.

In fact, the constant c can be made arbitrarily close to 1, at the expense of the constant K becoming large. The original proof allowed

[2]

Notes

  1. The original proof appeared in Milman (1984). See also Pisier (1989).
  2. See references for improved estimates.

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.