Quasi-split group
In mathematics, a quasi-split group over a field is a reductive group with a Borel subgroup defined over the field. Simply connected quasi-split groups over a field correspond to actions of the absolute Galois group on a Dynkin diagram.
Examples
All split groups (those with a split maximal torus) are quasi-split. These correspond to quasi-split groups where the action of the Galois group on the Dynkin diagram is trivial.
Lang (1956) showed that all simple algebraic groups over finite fields are quasi-split.
Over the real numbers, the quasi-split groups include the split groups and the complex groups, together with the orthogonal groups On,n+2, the unitary groups SUn,n and SUn,n+1, and the form of E6 with signature 2.
References
- Lang, Serge (1956), "Algebraic groups over finite fields", American Journal of Mathematics, 78: 555–563, ISSN 0002-9327, JSTOR 2372673, MR 0086367, doi:10.2307/2372673
This article is issued from
Wikipedia.
The text is licensed under Creative Commons - Attribution - Sharealike.
Additional terms may apply for the media files.