Quantum feedback
Quantum feedback or Quantum feedback control is a class of methods to prepare and manipulate a quantum system in which that system's quantum state or trajectory is used to evolve the system towards some desired outcome. Just as in the classical case, feedback occurs when outputs from the system are used as inputs that control the dynamics (e.g. by controlling the Hamiltonian of the system). The feedback signal is typically filtered or processed in a classical way, which is often described as measurement based feedback. However, quantum feedback also allows the possibility of maintaining the quantum coherence of the output as the signal is processed (via unitary evolution), which has no classical analogue.[1][2]
Notes
- ↑ Lloyd, Seth (14 July 2000). "Coherent quantum feedback". Physical Review A. 62 (2). doi:10.1103/PhysRevA.62.022108.
- ↑ Nelson, Richard J.; Weinstein, Yaakov; Cory, David; Lloyd, Seth (2 October 2000). "Experimental Demonstration of Fully Coherent Quantum Feedback". Physical Review Letters. 85 (14): 3045–3048. PMID 11005999. doi:10.1103/PhysRevLett.85.3045.
References
- H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control (Cambridge University Press, 2009).
- Wiseman, H.; Milburn, G. J. (1993). "Quantum theory of optical feedback via homodyne detection". Phys. Rev. Lett. 70 (5): 548–551. Bibcode:1993PhRvL..70..548W. doi:10.1103/PhysRevLett.70.548.
- Wiseman, H. (1994). "Quantum theory of continuous feedback". Phys. Rev. A. 49 (3): 2133–2150. doi:10.1103/PhysRevA.49.2133.
- Wiseman, H. M.; Milburn, G. J. (1993). "Quantum theory of field-quadrature measurements". Phys. Rev. A. 47 (1): 642. doi:10.1103/PhysRevA.47.642.
- Wiseman, H. M.; Milburn, G. J. (1993). "Interpretation of quantum jump and diffusion processes illustrated on the Bloch sphere". Phys. Rev. A. 47 (3): 1652–1666. doi:10.1103/PhysRevA.47.1652.
- Wiseman, H.; Milburn, G. (1994). "Squeezing via feedback". Phys. Rev. A. 49 (2): 1350–1366. doi:10.1103/PhysRevA.49.1350.
- Wiseman, H. M. (1996). "Quantum trajectories and quantum measurement theory". Quantum Semiclassical Opt. J. Eur. Opt. Soc. Part B. 8 (1): 205–222. doi:10.1088/1355-5111/8/1/015.
- Lloyd, S. (2000). "Coherent quantum feedback". Phys. Rev. A. 62 (2): 022108. doi:10.1103/PhysRevA.62.022108.
- Nelson, R. J.; Weinstein, Y.; Cory, D.; Lloyd, S. (2000). "Experimental demonstration of fully coherent quantum feedback". Phys. Rev. Lett. 85 (14): 3045–3048. PMID 11005999. doi:10.1103/PhysRevLett.85.3045.
This article is issued from
Wikipedia.
The text is licensed under Creative Commons - Attribution - Sharealike.
Additional terms may apply for the media files.