Quadratic pair

In mathematical finite group theory, a quadratic pair for the odd prime p, introduced by Thompson (1971), is a finite group G together with a quadratic module, a faithful representation M on a vector space over the finite field with p elements such that G is generated by elements with minimum polynomial (x  1)2. Thompson classified the quadratic pairs for p  5. Chermak (2004) classified the quadratic pairs for p = 3. With a few exceptions, especially for p = 3, groups with a quadratic pair for the prime p tend to be more or less groups of Lie type in characteristic p.

See also

p-stable group

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.