Proteinuria

Proteinuria
Pronunciation
  • /prtˈnʊəriə/ or /prtˈnjʊəriə/
Classification and external resources
Specialty Nephrology
ICD-10 R80
ICD-9-CM 791.0
DiseasesDB 25320
eMedicine med/94
Patient UK Proteinuria
MeSH D011507

Proteinuria is the presence of excess proteins in the urine. In healthy persons, urine contains very little protein; an excess is suggestive of illness. Excess protein in the urine often causes the urine to become foamy, although foamy urine may also be caused by bilirubin in the urine (bilirubinuria),[1] retrograde ejaculation, pneumaturia (air bubbles in the urine) due to a fistula,[2] or drugs such as pyridium.[1]

Causes

There are three main mechanisms to cause proteinuria:

Proteinuria can also be caused by certain biological agents, such as bevacizumab (Avastin) used in cancer treatment. Excessive fluid intake (drinking in excess of 4 litres of water per day is another cause.[3][4]

Also leptin administration to normotensive Sprague Dawley rats during pregnancy significantly increases urinary protein excretion.[5]

Proteinuria may be a sign of renal (kidney) damage. Since serum proteins are readily reabsorbed from urine, the presence of excess protein indicates either an insufficiency of absorption or impaired filtration. People with diabetes may have damaged nephrons and develop proteinuria. The most common cause of proteinuria is diabetes, and in any person with proteinuria and diabetes, the cause of the underlying proteinuria should be separated into two categories: diabetic proteinuria versus the field.

With severe proteinuria, general hypoproteinemia can develop which results in diminished oncotic pressure. Symptoms of diminished oncotic pressure may include ascites, edema and hydrothorax.

Conditions with proteinuria as a sign

Proteinuria may be a feature of the following conditions:[6]

Conditions with proteinuria consisting mainly of Bence-Jones proteins as a sign

Diagnosis

Protein dipstick grading
Designation Approx. amount
Concentration[10] Daily[11]
Trace 5–20 mg/dL
1+ 30 mg/dL Less than 0.5 g/day
2+ 100 mg/dL 0.5–1 g/day
3+ 300 mg/dL 1–2 g/day
4+ More than 1000 mg/dL More than 2 g/day

Conventionally, proteinuria is diagnosed by a simple dipstick test, although it is possible for the test to give a false negative reading,[12] even with nephrotic range proteinuria if the urine is dilute. False negatives may also occur if the protein in the urine is composed mainly of globulins or Bence Jones proteins because the reagent on the test strips, bromophenol blue, is highly specific for albumin.[6][13] Traditionally, dipstick protein tests would be quantified by measuring the total quantity of protein in a 24-hour urine collection test, and abnormal globulins by specific requests for protein electrophoresis.[1][14] Trace results may be produced in response to excretion of Tamm–Horsfall mucoprotein.

More recently developed technology detects human serum albumin (HSA) through the use of liquid crystals (LCs). The presence of HSA molecules disrupts the LCs supported on the AHSA-decorated slides thereby producing bright optical signals which are easily distinguishable. Using this assay, concentrations of HSA as low as 15 µg/mL can be detected.[15]

Alternatively, the concentration of protein in the urine may be compared to the creatinine level in a spot urine sample. This is termed the protein/creatinine ratio. The 2005 UK Chronic Kidney Disease guidelines states protein/creatinine ratio is a better test than 24-hour urinary protein measurement. Proteinuria is defined as a protein/creatinine ratio greater than 45 mg/mmol (which is equivalent to albumin/creatinine ratio of greater than 30 mg/mmol or approximately 300 mg/g) with very high levels of proteinuria having a ratio greater than 100 mg/mmol.[16]

Protein dipstick measurements should not be confused with the amount of protein detected on a test for microalbuminuria which denotes values for protein for urine in mg/day versus urine protein dipstick values which denote values for protein in mg/dL. That is, there is a basal level of proteinuria that can occur below 30 mg/day which is considered non-pathology. Values between 30–300 mg/day are termed microalbuminuria which is considered pathologic.[17] Urine protein lab values for microalbumin of >30 mg/day correspond to a detection level within the "trace" to "1+" range of a urine dipstick protein assay. Therefore, positive indication of any protein detected on a urine dipstick assay obviates any need to perform a urine microalbumin test as the upper limit for microalbuminuria has already been exceeded.[18]

Analysis

It is possible to analyze urine samples in determining albumin, hemoglobin and myoglobin with an optimized MEKC method.[19]

Treatment

Treating proteinuria mainly needs proper diagnosis of the cause. The most common cause is diabetic nephropathy; in this case, proper glycemic control may slow the progression. Medical management consists of angiotensin converting enzyme (ACE) inhibitors, which are typically first-line therapy for proteinuria. In patients whose proteinuria is not controlled with ACE inhibitors, the addition of an aldosterone antagonist (i.e., spironolactone)[20] or angiotensin receptor blocker (ARB)[21] may further reduce protein loss. Caution must be used if these agents are added to ACE inhibitor therapy due to the risk of hyperkalemia. Proteinuria secondary to autoimmune disease should be treated with steroids or steroid-sparing agent plus the use of ACE inhibitors.

See also

References

  1. 1 2 3 URINALYSIS Ed Friedlander, M.D., Pathologist - Retrieved 2007-01-20
  2. "Pneumaturia"Paid subscription required. GPnotebook. Retrieved 2007-01-20
  3. Clark WF, Kortas C, Suri RS, Moist LM, Salvadori M, Weir MA, Garg AX (2008). "Excessive fluid intake as a novel cause of proteinuria". Canadian Medical Association Journal. 178 (2): 173–175. PMC 2175005Freely accessible. PMID 18195291. doi:10.1503/cmaj.070792.
  4. "Drinking too much water called latest threat to health". Montreal Gazette. January 2008.
  5. Hisham S. Ibrahim, Gabriele Ruth Anisah Froemming, Effat Omar, and Harbindar Jeet Singh " Leptin increases blood pressure and markers of endothelial activation during pregnancy in rats". BioMed Research International Journal. Vol 2013. Article ID 298401, 6 pages.
  6. 1 2 Simerville JA, Maxted WC, Pahira JJ (2005). "Urinalysis: a comprehensive review". American Family Physician. 71 (6): 1153–62. PMID 15791892.
  7. Dettmeyer RB, Preuss J, Wollersen H, Madea B (2005). "Heroin-associated nephropathy". Expert opinion on drug safety. 4 (1): 19–28. PMID 15709895. doi:10.1517/14740338.4.1.19.
  8. Naesens (2015). "Proteinuria as a Noninvasive Marker for Renal Allograft Histology and Failure: An Observational Cohort Study.". J Am Soc Nephrol. 27: 281–92. PMC 4696583Freely accessible. PMID 26152270. doi:10.1681/ASN.2015010062.
  9. Chou JY, Matern D, Mansfield BC, Chen YT (2002). "Type 1 Glycogen Storage Diseases: Disorders of the Glucose-6-Phosphatase Complex". Current Molecular Medicine. 2 (2): 121–143. PMID 11949931. doi:10.2174/1566524024605798.
  10. eMedicine > Proteinuria Author: Ronald J Kallen. Coauthor: Watson C Arnold. Updated: Apr 21, 2008
  11. Ivanyi B, Kemeny E, Szederkenyi E, Marofka F, Szenohradszky P (December 2001). "The value of electron microscopy in the diagnosis of chronic renal allograft rejection". Mod. Pathol. 14 (12): 1200–8. PMID 11743041. doi:10.1038/modpathol.3880461.
  12. Simerville JA, Maxted WC, and Pahira JJ. Urinalysis: A Comprehensive Review Am Fam Physician. 2005 Mar 15;71(6):1153-1162. Accessed 2 Feb 2012.
  13. http://medlib.med.utah.edu/WebPath/TUTORIAL/URINE/URINE.html Retrieved 2007-01-20
  14. http://www.answers.com/topic/protein-electrophoresis Retrieved 2007-01-20
  15. Aliño VJ, Yang KL (2011). "Using liquid crystals as a readout system in urinary albumin assays.". Analyst. 136 (16): 3307–13. PMID 21709868. doi:10.1039/c1an15143f.
  16. "Identification, management and referral of adults with chronic kidney disease: concise guidelines" (PDF). UK Renal Association. 2005-09-27. - see Guideline 4 Confirmation of proteinuria, on page 9
  17. Meyer NL, Mercer BM, Friedman SA, Sibai BM (Jan 1994). "Urinary dipstick protein: a poor predictor of absent or severe proteinuria.". Am J Obstet Gynecol. 170: 137–41. PMID 8296815. doi:10.1016/s0002-9378(94)70398-1.
  18. "The Urine Dipstick" (PDF). Georgia Regents University.
  19. Kočevar Glavač N, Injac R, Kreft S (2009). "Optimization and Validation of a Capillary MEKC Method for Determination of Proteins in Urine". Chromatographia. 70: 1473–1478. doi:10.1365/s10337-009-1317-3.
  20. Mehdi UF, Adams-Huet B, Raskin P, Vega GL, Toto RD (2009). "Addition of angiotensin receptor blockade or mineralocorticoid antagonism to maximum angiotensin-converting enzyme inhibition in diabetic nephropathy.". J Am Soc Nephrol. 20 (12): 2641–50. PMC 2794224Freely accessible. PMID 19926893. doi:10.1681/ASN.2009070737.
  21. Burgess E, Muirhead N, Rene de Cotret P, Chiu A, Pichette V, Tobe S (2009). "Supramaximal dose of candesartan in proteinuric renal disease.". J Am Soc Nephrol. 20 (4): 893–900. PMC 2663827Freely accessible. PMID 19211712. doi:10.1681/ASN.2008040416.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.