List of probabilistic proofs of non-probabilistic theorems

Probability theory routinely uses results from other fields of mathematics (mostly, analysis). The opposite cases, collected below, are relatively rare; however, probability theory is used systematically in combinatorics via the probabilistic method. They are particularly used for non-constructive proofs.

Analysis

Combinatorics

Algebra

Topology and geometry

Number theory

Quantum theory

Information theory

See also

Notes

  1. Karel de Leeuw, Yitzhak Katznelson and Jean-Pierre Kahane, Sur les coefficients de Fourier des fonctions continues. (French) C. R. Acad. Sci. Paris Sér. A–B 285:16 (1977), A1001–A1003.
  2. Salem, Raphaël (1951). "On singular monotonic functions whose spectrum has a given Hausdorff dimension". Ark. Mat. 1: 353–365. doi:10.1007/bf02591372.
  3. Kaufman, Robert (1981). "On the theorem of Jarník and Besicovitch". Acta Arith. 39 (3): 265–267.
  4. Blyth, Colin R.; Pathak, Pramod K. (1986), "A note on easy proofs of Stirling's theorem", American Mathematical Monthly, 93 (5): 376–379, JSTOR 2323600, doi:10.2307/2323600.
  5. Gordon, Louis (1994), "A stochastic approach to the gamma function", American Mathematical Monthly, 101 (9): 858–865, JSTOR 2975134, doi:10.2307/2975134.
  6. 1 2 Revuz, Daniel; Yor, Marc (1994), Continuous martingales and Brownian motion (2nd ed.), Springer (see Exercise (2.17) in Section V.2, page 187).
  7. See Fatou's theorem.
  8. Durrett, Richard (1984), Brownian motion and martingales in analysis, California: Wadsworth, ISBN 0-534-03065-3.
  9. Bass, R.F.; Burdzy, K. (1989), "A probabilistic proof of the boundary Harnack principle", Seminar on Stochastic Processes, Boston: Birkhäuser (published 1990), pp. 1–16, hdl:1773/2249.
  10. Bass, Richard F. (1995), Probabilistic techniques in analysis, Springer, p. 228.
  11. Markowsky, Greg T. (2011), "On the expected exit time of planar Brownian motion from simply connected domains", Electronic Communications in Probability, 16: 652–663, doi:10.1214/ecp.v16-1653.
  12. Davis, Burgess (1975), "Picard’s theorem and Brownian motion", Transactions of the American Mathematical Society, 213: 353–362, doi:10.2307/1998050.
  13. Davis, Burgess (1979), "Brownian motion and analytic functions", Annals of Probability, 7: 913–932, doi:10.1214/aop/1176994888.
  14. Bismut, Jean-Michel (1984), "The Atiyah–Singer Theorems: A Probabilistic Approach. I. The index theorem", J. Funct. Analysis, 57: 56–99, doi:10.1016/0022-1236(84)90101-0.
  15. As long as we have no article on Martin boundary, see Compactification (mathematics)#Other compactification theories.
  16. Bishop, C. (1991), "A characterization of Poissonian domains", Arkiv för Matematik, 29 (1): 1–24, doi:10.1007/BF02384328 (see Section 6).
  17. Tsirelson, Boris (1997), "Triple points: from non-Brownian filtrations to harmonic measures", Geometric and Functional Analysis, Birkhauser, 7 (6): 1096–1142, doi:10.1007/s000390050038. author's site
  18. Tsirelson, Boris (1998), "Within and beyond the reach of Brownian innovation", Proceedings of the international congress of mathematicians, Documenta mathematica, Extra Volume ICM 1998, III, Berlin: der Deutschen Mathematiker-Vereinigung, pp. 311–320, ISSN 1431-0635.
  19. Tolsa, Xavier; Volberg, Alexander (2017). "On Tsirelson's theorem about triple points for harmonic measure". International Mathematics Research Notices. arXiv:1608.04022Freely accessible. doi:10.1093/imrn/rnw345.
  20. Horowitz, Charles; Usadi Katz, Karin; Katz, Mikhail G. (2008). "Loewner's torus inequality with isosystolic defect". Journal of Geometric Analysis. 19 (4): 796–808. arXiv:0803.0690Freely accessible. doi:10.1007/s12220-009-9090-y.
  21. Neel, Robert W. (2008), "A martingale approach to minimal surfaces", Journal of Functional Analysis, Elsevier, 256 (8): 2440–2472, doi:10.1016/j.jfa.2008.06.033. Also arXiv:0805.0556.
  22. Fulman, Jason (2001), "A probabilistic proof of the Rogers–Ramanujan identities", Bulletin of the London Mathematical Society, 33 (4): 397–407, doi:10.1017/S0024609301008207. Also arXiv:math.CO/0001078.
  23. Arveson, William (2003), Noncommutative dynamics and E-semigroups, New York: Springer, ISBN 0-387-00151-4.
  24. Tsirelson, Boris (2003), "Non-isomorphic product systems", in Price, Geoffrey, Advances in quantum dynamics, Contemporary mathematics, 335, American mathematical society, pp. 273–328, ISBN 0-8218-3215-8. Also arXiv:math.FA/0210457.
  25. Tsirelson, Boris (2008), "On automorphisms of type II Arveson systems (probabilistic approach)", New York Journal of Mathematics, 14: 539–576.
  26. Bhat, B.V.Rajarama; Srinivasan, Raman (2005), "On product systems arising from sum systems", Infinite Dimensional Analysis, Quantum Probability and Related Topics (IDAQP), 8 (1): 1–31, doi:10.1142/S0219025705001834. Also arXiv:math.OA/0405276.
  27. Izumi, Masaki; Srinivasan, Raman (2008), "Generalized CCR flows", Communications in Mathematical Physics, 281 (2): 529–571, doi:10.1007/s00220-008-0447-z. Also arXiv:0705.3280.
  28. Perez-Garcia, D.; Wolf, M.M.; C., Palazuelos; Villanueva, I.; Junge, M. (2008), "Unbounded violation of tripartite Bell inequalities", Communications in Mathematical Physics, Springer, 279 (2): 455–486, doi:10.1007/s00220-008-0418-4
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.