Probabilistic number theory

Probabilistic number theory is a subfield of number theory, which explicitly uses probability to answer questions of number theory. One basic idea underlying it is that different prime numbers are, in some serious sense, like independent random variables. This however is not an idea that has a unique useful formal expression.

The founders of the theory were Paul Erdős, Aurel Wintner and Mark Kac during the 1930s, one of the periods of investigation in analytic number theory. The Erdős–Wintner theorem and the Erdős–Kac theorem on additive functions were foundational results.

See also

References

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.