Prefix grammar

In theoretical computer science and formal language theory, a prefix grammar is a type of string rewriting system, consisting of a set of string rewriting rules, and similar to a formal grammar or a semi-Thue system. What is specific about prefix grammars is not the shape of their rules, but the way in which they are applied: only prefixes are rewritten. The prefix grammars describe exactly all regular languages.[1]

Formal definition

A prefix grammar G is a 3-tuple, (Σ, S, P), where

For strings x, y, we write x →G y (and say: G can derive y from x in one step) if there are strings u, v, w such that x = vu, y = wu, and v → w is in P. Note that G is a binary relation on the strings of Σ.

The language of G, denoted L(G), is the set of strings derivable from S in zero or more steps: formally, the set of strings w such that for some s in S, s R w, where R is the transitive closure of G.

Example

The prefix grammar

describes the language defined by the regular expression

See also

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.