Power Mac G5

Power Mac G5

Apple Power Mac G5
Developer Apple Computer, Inc.
Type Desktop
Release date June 23, 2003
Introductory price USD$1,999 (2003)
Discontinued August 7, 2006
CPU 1.6 – 2.7 GHz PowerPC G5
Single-processor
Dual-processors, single-core
Dual-core
Dual-processors, dual-core
Predecessor Power Mac G4
Successor Mac Pro

The Power Mac G5 is Apple's marketing name for models of the Power Macintosh that contained the IBM PowerPC G5 CPU inside an anodized aluminium chassis.[1] The professional-grade computer was the most powerful in Apple's lineup when it was introduced, widely hailed as the first 64-bit personal computer, and was touted by Apple as the fastest personal computer ever built. It was officially launched as part of Steve Jobs' keynote presentation in June 2003 at the Worldwide Developers Conference, and saw three revisions to the line before being retired in August 2006 to make way for its Intel replacement, the Mac Pro.

Introduction

The Power Mac G5 was introduced with three models, sharing the same physical case, but differing in features and performance. The physical case of the Power Mac G5 was very different and unusual compared to any other computer at that time. Although somewhat larger than the G4 tower it replaced, the G5 tower had room inside for only one optical, and two hard drives.

Steve Jobs stated during his keynote presentation that the Power Mac G5 would reach 3 GHz "within 12 months." This would never come to pass; after three years, the G5 only reached 2.7 GHz and was able to support 16 GB of RAM before it was replaced by the Intel Xeon-based Mac Pro, which debuted with processors running at speeds of up to 3 GHz.

During the presentation, Apple also showed Virginia Tech's Mac OS X computer cluster supercomputer (a.k.a. supercluster) known as System X, consisting of 1100 Power Mac G5s operating as processing nodes. The supercomputer managed to become one of the top 5 supercomputers that year. The computer was soon dismantled and replaced with a new cluster made of an equal number of Xserve G5 rack-mounted servers, which also use the G5 chip running at 2.3 GHz.

PowerPC G5 and the IBM partnership

The inside of a Power Mac G5, late 2005 model

The PowerPC G5 (called the PowerPC 970 by its manufacturer, IBM) is based upon IBM's dual-core POWER4 microprocessor. At the Power Mac G5's introduction, Apple announced a partnership with IBM in which IBM would continue to produce PowerPC variants of their POWER processors. According to IBM's Dr. John E. Kelly, "The goal of this partnership is for Apple and IBM to come together so that Apple customers get the best of both worlds, the tremendous creativity from Apple Computers and the tremendous technology from the IBM corporation. IBM invested over $3 billion US dollars in a new lab to produce these large, 300 mm wafers." This lab was a completely automated facility located in East Fishkill, New York, and figured heavily in IBM's larger microelectronics strategy.

The original PowerPC 970 had 50 million transistors and was manufactured using IBM CMOS 9S at 130 nm fabrication process. CMOS 9S is the combination of SOI, low-k dielectric insulation, and copper interconnect technology, which were invented at IBM research in the mid-1990s. Subsequent revisions of the "G5" processor have included IBM's PowerPC 970FX (same basic design on a 90 nm process), and the PowerPC 970MP (essentially two 970FX cores on one die). Apple refers to the dual-core PowerPC 970MP processors as either the "G5 Dual" (for single-socket, dual-core configurations), or Power Mac G5 Quad (for dual-socket, four-core configurations).

Architecture

The PowerPC 970FX inside a PowerMac G5.

The Power Mac G5 line in 2006 consisted of three, dual-core PowerPC G5 configurations, which can communicate through its FSB at half its internal clock speed. Each processor in the Power Mac G5 has two unidirectional 32-bit pathways: one leading to the processor and the other from the processor. These result in a total bandwidth of up to 20 GB/s. The processor at the heart of the Power Mac G5 has a "superscalar, superpipelined" execution core that can handle up to 216 in-flight instructions, and uses a 128-bit, 162-instruction SIMD unit (AltiVec).

All modern 32-bit x86 processors since the Pentium Pro have the Physical Address Extension (PAE) feature, which permits them to use a 36-bit physical memory address to address a maximum of 236 bytes (64 gigabytes) of physical memory, while the PowerPC 970 processor is capable of addressing 242 bytes (4 terabytes) of physical memory and 264 bytes (16 exabytes) of virtual memory. Due to its 64-bit processor (and 42-bit MMU), the final revision of the Power Mac G5 can hold 16 GB of Dual-Channel DDR2 PC4200 RAM using eight memory slots, with support for ECC memory.

Product revision history

DP designates a dual-processor machine, SP designates a single-processor machine, and DC designates a dual-core-processor machine.

Component Power Mac G5 Power Mac G5 (Mid 2004) Power Mac G5 (Late 2004) Power Mac G5 (Early 2005) Power Mac G5 (Late 2005)
Codename "Omega, Q37" "Niagara, Q77, Q78" "Q77, Q78" N/A "Cypher"
Model identifier PowerMac7,2PowerMac7,3PowerMac9,1PowerMac7,3PowerMac11,2
Processor SP 1.6, 1.8, DP 1.8, or DP 2.0 GHz PowerPC 970 (G5) DP 1.8, DP 2.0, or DP 2.5 GHz PowerPC 970FX (G5) SP 1.8 GHz PowerPC 970FX (G5) DP 2.0, DP 2.3, or DP 2.7 GHz PowerPC 970FX (G5) DC 2.0, DC 2.3, or DP DC "Quadcore" 2.5 GHz PowerPC 970MP (G5)
Cache 64 KB (instruction), 32 KB (data) L1, 512 KB L2 64K (instruction), 32K (data) L1, 1 MB L2 per core
Front side bus 800, 900, Dual 900 MHz, or Dual 1.0 GHz (2:1) Dual 900 MHz, Dual 1.0, or Dual 1.25 GHz (2:1) 600 MHz (3:1) Dual 1.0, Dual 1.15, or Dual 1.35 GHz (2:1) 1.0, 1.15, or Dual 1.25 GHz (2:1)
Memory 256 MB of PC-2700 DDR RAM (1.6 GHz SP)
Expandable to 4 GB
256 MB of PC-2700 DDR RAM (1.8 GHz DP)
Expandable to 4 GB
256 MB of PC-2700 DDR RAM
Expandable to 4 GB
512 MB of PC-3200 DDR SDRAM
Expandable to 4 GB (2.0 GHz DP) or 8 GB (2.3 GHz DP+)
512 MB of PC2-4200 DDR2 SDRAM
Expandable to 16 GB
512 MB of PC-3200 DDR SDRAM (1.8 GHz SP+)
Expandable to 8 GB
512 MB of PC-3200 DDR SDRAM (2.0 GHz DP+)
Expandable to 8 GB
Graphics NVIDIA GeForceFX 5200 Ultra, GeForce 6800 Ultra DDL, ATI Radeon 9600 Pro, or Radeon 9800 Pro with 64, 128, or 256 MB of DDR RAM NVIDIA GeForceFX 5200 Ultra, GeForce 6800 GT DDL, GeForce 6800 Ultra DDL, ATI Radeon 9600 XT, or Radeon 9800 XT with 64, 128, or 256 MB of DDR RAM NVIDIA GeForce 6800 Ultra DDL, ATI Radeon 9600, Radeon 9650, or Radeon X850 XT with 128 or 256 MB of DDR RAM NVIDIA GeForce 6600 LE, GeForce 6600, GeForce 7800 GT, or Quadro FX 4500 with 128, 256, or 512 MB of DDR RAM
Hard drive 80, 160, or 250 GB 160, 250, or 400 GB 160, 250, or 500 GB
Serial ATA 7200-rpm
Optical drive 4x SuperDrive 4x/8x/16x/8x/32x DVD-R/CD-RW 8x SuperDrive 8x/10x/24x/10x/32x DVD-R/CD-RW 16x SuperDrive DVD+R DL/DVD±RW/CD-RW
Connectivity Optional AirPort Extreme 802.11b/g (external antenna)
1x Gigabit Ethernet
56k V.92 modem (Optional on Late 2004 model)
Optional Bluetooth 1.1
Optional AirPort Extreme 802.11b/g (external antenna)
1x Gigabit Ethernet
Optional 56k V.92 modem
Optional Bluetooth 2.0+EDR
Optional AirPort Extreme 802.11b/g (internal antenna) with Bluetooth 2.0+EDR card
2x Gigabit Ethernet
Optional 56k V.92 USB modem
Expansion slots 3x 33 MHz 64-bit PCI
1x 8x AGP Pro (1.6 GHz SP)
3x 33 MHz 64-bit PCI
1x 8x AGP Pro (1.8 GHz DP)
3x 33 MHz 64-bit PCI
1x 8x AGP Pro
3x 33 MHz 64-bit PCI
1x 8x AGP Pro (2.0 GHz DP)
2x PCI Express x4
1x PCI Express x8
1x PCI Express x16
2x 100 MHz 64-bit PCI-X
1x 133 MHz 64-bit PCI-X
1x 8x AGP Pro (1.8 GHz SP+)
2x 100 MHz 64-bit PCI-X
1x 133 MHz 64-bit PCI-X
1x 8x AGP Pro (2.0 GHz DP+)
2x 100 MHz 64-bit PCI-X
1x 133 MHz 64-bit PCI-X
1x 8x AGP Pro (2.3 GHz DP+)
Peripherals 3x USB 2.0
2x Firewire 400
1x Firewire 800
Built-in mono speaker
1x Audio-in mini-jack
2x Audio-out mini-jack
1x Optical S/PDIF (Toslink) input
1x Optical S/PDIF (Toslink) output
4x USB 2.0
2x Firewire 400
1x Firewire 800
Built-in mono speaker
1x Audio-in mini-jack
2x Audio-out mini-jack
1x Optical S/PDIF (Toslink) input
1x Optical S/PDIF (Toslink) output
Maximum
Operating System
Mac OS X 10.5.8 "Leopard"
Weight 39.2 lb (17.8 kg) 44.4 lb (20.1 kg) 36 lb (16 kg) 44.4 lb (20.1 kg) 44.5–48.8 lb (20.2–22.1 kg)

Defects

The back of a late 2005 model.

Early versions of dual processor G5 computers have noise problems. The first one is ground loop-based interference,[5] which sometimes causes noise leaks into the analog audio outputs. This bug was fixed in Rev. B G5.

The second noise problem came from the 'chirping' sound, which can be triggered by fluctuations in power draw. For example, showing and hiding the Dock makes a brief chirp. Many had blamed the power supply used in the G5 as the cause, but this theory has never been confirmed. A very effective work-around is to disable the CPUs' "nap" feature using Apple's CHUD Tools, but this was not recommended by Apple. This noise problem was not fixed until the dual core generation of G5s was produced, however it did not affect the "Late 2004" model (at least there have never been any reports). The power draw fluctuation was later attributed to the lack of power management features in the single-core processors.[6] Apple eventually posted the chirping bug information on its support site.[7]

Although the noise problems did not prevent the affected computers from working, they were problematic for audio professionals and enthusiasts, especially for the liquid-cooled models, which had been expressly designed as mechanically quiet for discerning listeners.

A common problem amongst single processor G5s was that the plate of metal soldered to the Logic Board connecting all eight of the RAM slots would, over time, expand and contract in such a way that the computer could not boot properly, as it would not detect any RAM. The only way known to fix this problem is for someone to re-solder the plate themselves or expose the other side of the Logic Board to heat from a Heat Gun. The latter of these two options is far easier, as to access the plate of metal one would have to totally take out the Logic Board of the computer, whereas all one has to do to expose the other side is remove a fan.

All 2.5 GHz dual processor and all 2.7 GHz dual-processor and the 2.5 GHz quad-processor variant had a liquid cooling system that consisted of a radiator, coolant pump, and heat exchangers bolted to the processors. The cooling system was made by Delphi Automotive, a former Harrison Radiator Division of General Motors. This was a bold step for Apple, and should have allowed the use of very fast processors, giving Apple an advantage in both the performance and reliability race, but the system turned out to be subject to coolant leakage.[8] If not caught in time, the leakage could destroy the processors, logic board, and even corrode the aluminium casing itself. While leakage was sometimes detectable by drops of green coolant in or beneath the machine, in many machines the seepage is so slight that it was almost impossible to detect without dismantling the entire computer. Later models (only the 2.7GHz) were equipped with a Panasonic liquid cooling system which was much more reliable.[9]

The liquid cooling system fits into the case where the heat sinks would normally go, so there is no easy way to distinguish the liquid-cooled versions from the air-cooled, although most, but not all, of the liquid-cooled machines have a sticker inside warning about the possibility of leakage.

P.A. Semi's G5 derivative

When P.A. Semi announced the preliminary pre-production plan of PWRficient processor,[10] there had been persistent rumors that Apple would prepare for its use in its professional line of personal computers.[11]

In 2006, The Register reported that P.A. Semi had formed a tight relationship with Apple, which would result in P.A. Semi promptly delivering processor chips for Apple's personal computer notebook line and possibly desktops.[12] Even in 2006, Apple did not have a laptop version of the G5 processor. The processor that would run the personal computers was P.A. Semi's preliminarily proposed processor, PWRficient 1682M (PA6T-1682M). The version that would be sampled for pre-production at third quarter of 2006 was a 2 GHz, dual-core CPU with two DDR2 memory controllers, 2 MB of L2 cache, and support for 8 PCI Express lanes. The sampled chip also has lower heat intensity than Intel's Core Duo, which gives off 9–31 W under normal load.

According to The Register article, P.A. Semi executives believed that they were all but assured of winning Apple's contract, and CEO Dan Dobberpuhl thought that Apple's hints of moving to Intel were just a persuading tactic. At the time, the companies were working for PWRficient software.

Despite the advantages of more compatible architecture, Apple moved to the Intel architecture officially for 'performance-per-watt' reasons. However, P.A. Semi would not be able to ship its low-power multicore product in volume until 2007, which, combined with P.A. Semi's status as a start-up company, seems to have been the final blow to the development of Power Mac computers. However, it was also speculated that Apple switched to Intel processor because Apple could no longer abide the constant delays in performance ramp up,[13] desired native Windows compatibility, or it was Apple's strategy to shift its business focus away from desktop computing to iPod (and subsequently iOS (Apple)) development.

Apple acquired P.A. Semi in 2008,[14] using P.A. Semi's engineering resources to develop ARM CPUs for their iPhone, iPod Touch, iPad, and Apple TV product lines.[15]

Notes

  1. Power Mac G5 User's Guide, Late 2005, apple.com page 5. Retrieved January 13, 2014
  2. "Apple Introduces Power Mac G5 Quad & Power Mac G5 Dual". Apple Inc. October 19, 2005. Retrieved June 27, 2009.
  3. Kossovsky, Yuval (November 16, 2005). "The Power Mac G5 Quad: Seat belt not included". Computerworld. International Data Group. Retrieved June 27, 2008.
  4. Norr, Henry (November 22, 2005). "Power Mac G5 Quad: Fast performance at its core". Macworld. International Data Group. Retrieved June 27, 2008.
  5. "Macintosh: Solutions for noise in the audio signal". Apple Inc. December 16, 2004. Retrieved June 27, 2008.
  6. "G5 owner Feedback on Noises, CHUD Tools Nap mode Fix". Accelerate Your Mac. September 30, 2003. Retrieved October 23, 2008.
  7. "Power Mac G5: I hear buzzes, beeps, or humming". Apple Inc. September 1, 2005. Retrieved June 27, 2008.
  8. "PowerMac G5 Coolant Leaks/Repairs.". XLR8yourmac. Retrieved July 15, 2013.
  9. "PowerMac G5 Coolant Leaks/Repairs.". XLR8yourmac. Retrieved July 15, 2013.
  10. Merritt, Rick (October 24, 2005). "PowerPC play: He shoots ...". EE Times. United Business Media. Retrieved June 27, 2008.
  11. Gwennap, Linley; Bob Wheeler; Jag Bolaria; Joseph Byrne (November 10, 2005). "The Linley Group". The Linley Wire. The Linley Group. Retrieved June 27, 2008.
  12. Vance, Ashlee (May 19, 2006). "Apple shunned superstar chip start-up for Intel". The Register. The Register. Retrieved June 27, 2008.
  13. Stokes, Jon (October 26, 2005). "P.A. Semi's major PowerPC announcement, and looking back at The Switch". Ars Technica. Ars Technica. Retrieved June 27, 2008.
  14. "Apple Buys Chip Designer". Forbes. Archived from the original on April 24, 2008. Retrieved 2008-04-23.
  15. Vance, Ashlee; Stone, Brad (2010-02-02). "A Little Chip Designed by Apple Itself". The New York Times. Retrieved 2010-02-02.
Preceded by
Power Mac G4
Power Mac G5
June 24, 2003
Succeeded by
Mac Pro
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.