Photopsin

Normalised absorption spectra of the three human photopsins and of human rhodopsin (dashed).

Photopsins (also known as Cone opsins) are the photoreceptor proteins found in the cone cells of the retina that are the basis of color vision. Iodopsin, the cone pigment system in chicken retina, is a close analog of the visual purple rhodopsin that is used in night vision. Iodopsin consists of the protein component and a bound chromophore, retinal.

Function

Opsins are Gn-x protein-coupled receptors of the retinylidene protein family. Isomerization of 11-cis-retinal into all-trans-retinal by light induces a conformational change in the protein that activates photopsin and promotes its binding to G protein transducin, which triggers a second messenger cascade.

Types

Different opsins differ in a few amino acids and absorb light at different wavelengths as retinal-bound pigments.

Cone type Name Range Peak wavelength[1][2]
S (OPN1SW) - "tritan", "cyanolabe" β 400500 nm 420–440 nm
M (OPN1MW) - "deutan", "chlorolabe" γ 450630 nm 534–545 nm
L (OPN1LW) - "protan", "erythrolabe" ρ 500700 nm 564–580 nm

In humans there are 3 different iodopsins (rhodopsin analogs) that contain the protein-pigment complexes photopsin I, II, and III.

The 3 types of iodopsins are called erythrolabe(photopsin I + retinal), chlorolabe(photopsin II + retinal), and cyanolabe(photopsin III + retinal).[3]

These photopsins have absorption maxima for red ["erythr"-red] (photopsin I), green ["chlor"-green] (photopsin II), and bluish-violet light ["cyan"-bluish violet] (photopsin III).

History

George Wald received the 1967 Nobel Prize in Physiology or Medicine for his experiments in the 1950s that showed the difference in absorbance by these photopsins (see image).[4]

See also

References

  1. Wyszecki, Günther; Stiles, W.S. (1982). Color Science: Concepts and Methods, Quantitative Data and Formulae (2nd ed.). New York: Wiley Series in Pure and Applied Optics. ISBN 0-471-02106-7.
  2. R. W. G. Hunt (2004). The Reproduction of Colour (6th ed.). Chichester UK: Wiley–IS&T Series in Imaging Science and Technology. pp. 11–12. ISBN 0-470-02425-9.
  3. Rushton, W. A. H. (1 June 1966). "Densitometry of pigments in rods and cones of normal and color defective subjects" (PDF). Investigative Ophthalmology. 5 (3): 233–241. PMID 5296487. Retrieved 2006-11-14.
  4. The Nobel Foundation. "The Nobel Prize in Physiology or Medicine 1967". Nobelprize.org. Nobel Media AB 2014. Retrieved 12 December 2015.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.