Polyporales
Polyporales | |
---|---|
Ganoderma applanatum | |
Scientific classification | |
Kingdom: | Fungi |
Division: | Basidiomycota |
Class: | Agaricomycetes |
Order: | Polyporales Gäum. (1926) |
Families | |
Cystostereaceae | |
Synonyms[2] | |
|
The Polyporales are an order of about 1800 species of fungi in the division Basidiomycota. The order includes some (but not all) polypores as well as many corticioid fungi and a few agarics (mainly in the genus Lentinus). Many species within the order are saprotrophic, most of them wood-rotters. Some genera, such as Ganoderma and Fomes, contain species that attack living tissues and then continue to degrade the wood of their dead hosts. Those of economic importance include several important pathogens of forest and amenity trees and a few species that cause damage by rotting structural timber. Some of the Polyporales are commercially cultivated and marketed for use as food items or in traditional Chinese medicine.
Taxonomy
History
The order was originally proposed in 1926 by German mycologist Ernst Albert Gäumann to accommodate species within the phylum Basidiomycota producing basidiocarps (fruit bodies) showing a gymnocarpous mode of development (forming the spore-bearing surface externally). As such, the order included the ten families Brachybasidiaceae, Corticiaceae, Clavariaceae, Cyphellaceae, Dictyolaceae, Fistulinaceae, Polyporaceae, Radulaceae, Tulasnellaceae, and Vuilleminiaceae, representing a mix of poroid, corticioid, cyphelloid, and clavarioid fungi.[5]
The order was not widely adopted by Gäumann's contemporaries, most mycologists and reference works preferring to use the catch-all, artificial order Aphyllophorales for polypores and other "non-gilled fungi". When an attempt was made to introduce a more natural, morphology-based classification of the fungi in the 1980s and 1990s, the order was still overlooked. A standard 1995 reference work placed most polypores and corticioid fungi in the Ganodermatales, Poriales, and Stereales.[6]
Current status
Molecular research, based on cladistic analysis of DNA sequences, has resurrected and redefined the Polyporales (also known as the polyporoid clade).[7][8][9] Though the precise boundaries of the order and its constituent families are yet to be resolved, it retains the core group of polypores in the family Polyporaceae, with additional species in the Fomitopsidaceae and Meripilaceae. It also includes polypores in the Ganodermataceae, which were previously assigned to their own separate order, the Ganodermatales, based on their distinctive basidiospore morphology. Corticioid fungi belonging to the Cystostereaceae, Meruliaceae, Phanerochaetaceae, and Xenasmataceae are also included, as are the cauliflower fungi in the Sparassidaceae.[10]
In an extensive molecular analysis, Manfred Binder and colleagues analyzed 6 genes from 373 species and confirmed the existence of four previously recognized lineages of Polyporales: the antrodia, core polyporoid, phlebioid, and residual polyporoid clades.[9] Extending this work, Alfredo Justo and colleagues proposed a phylogenetic overview of the Polyporales that included a new family-level classification. They assigned family names to 18 clades and four informal unranked clades. The families are listed below, followed by their taxonomic authorities and year of publication:[11]
- Phanerochaetaceae Jülich (1981)
- Irpicaceae Spirin & Zmitr. (2003)
- Meruliaceae Rea (1922)
- Steccherinaceae Parmasto (1968)
- Cerrenaceae Miettinen, Justo & Hibbett 2017)
- Panaceae Miettinen, Justo & Hibbett (2017)
- Hyphodermataceae Jülich (1981)
- Meripilaceae Jülich (1981)
- Podoscyphaceae D.A.Reid (1965)
- Polyporaceae Corda (1939)
- Fomitopsidaceae Jülich (1981)
- Laetiporaceae Jülich (1981)
- Dacryobolaceae Jülich (1981)
- Sparassidaceae Jülich (1981)
- Grifolaceae Jülich (1981)
- Gelatoporiaceae Miettinen, Justo & Hibbett (2017)
- Incrustoporiaceae Jülich (1981)
- Ischnodermataceae Jülich (1981)
Other families that putatively belong to the Polyporales, but for which molecular confirmation is absent or lacking, include Diachanthodaceae Jülich, (1981); Fragiliporiaceae Y.C.Dai, B.K.Cui & C.L.Zhao (2015); Hymenogrammaceae Jülich (1981); Nigrofomitaceae Jülich (1981); and Phaeotrametaceae Popoff ex Piątek (2005).[11]
The family Steccherinaceae was redefined in 2012 to contain most species of the poroid and hydnoid genera Antrodiella, Junghuhnia, and Steccherinum, as well as members of 12 other hydnoid and poroid genera that had been traditionally classified in the families Phanerochaetaceae, Polyporaceae, and Meruliaceae.[12] Several new genera were added to the Steccherinaceae in 2016–17.[13][14]
Ecology
The order is cosmopolitan and contains around 1800 species of fungi worldwide—about 1.5% of all known fungus species.[11] All species in the Polyporales are saprotrophs, most of them wood-rotters. They are therefore typically found on living or moribund trees or on dead attached or fallen wood. White rot species of Polyporales are efficient degraders of the decay-resistant polymer lignin, and are an important component of the carbon cycle.[9]
Economic importance
Many wood decay fungi in the genera Fomes, Fomitopsis and Ganoderma are pathogenic, causing butt and root rot of living trees and consequent losses in forestry plantations. Several species, such as the mine fungus Fibroporia vaillantii, can rot and damage structural timber.[15]
Several of the Polyporales, notably Ganoderma lucidum (ling-zhi), Grifola frondosa (maitake),[16] Taiwanofungus camphoratus (niú zhāng zhī),[17] Lignosus rhinocerotis,[18] and Trametes versicolor (yun-zhi),[19] are commercially cultivated and marketed for use in traditional Chinese medicine. The polypores Laetiporus sulphureus, Fomes fomentarius, Fomitopsis pinicola, Piptoporus betulinus, and Laricifomes officinalis have been widely used in central European folk medicine for the treatment of various diseases.[20]
Some species, including several members of the genera Laetiporus and Sparassis, are used as food.[21] Blackfellow's bread, or Laccocephalum mylittae, is an edible that is prized by Aboriginal Australians.[22] Piptoporus betulinus was formerly used in the manufacture of charcoal crayons.[23] Amadou, a spongy material derived from the fruit bodies of Fomes fomentarius, has been used since ancient times as a tinder. More recently, it has been used by dentists as a styptic, or as a felt-like material for making hats and other items.[24]
Sequenced genomes
Several member of the Polyporales have had their genomes sequenced to help understand the genetic basis for the production of enzymes involved in the synthesis of bioactive compounds, or to elucidate the metabolic pathways of wood decay, including Ganoderma lucidum,[25] Lignosus rhinocerotis,[26] Dichomitus squalens,[27] Fomitopsis pinicola,[27] Trametes versicolor,[27] and Wolfiporia cocos.[27] Two sequenced fungi, Phanerochaete chrysosporium,[28] and Postia placenta,[29] serve as model species for researchers investigating the mechanism of white rot and brown rot, respectively.[30][31] As of 2017, there have been 46 Polyporales genomes sequenced, representing about 7% of all sequenced fungal genomes.[11]
Fossil record
Fossilized fruit bodies of a Fomes species dating back to the Tertiary (66–2.6 Ma) were reported in Idaho in 1940.[32] A fossil fruit body of Ganodermites libycus was reported from the Early Miocene (23–2.6 Ma) in the Libyan Desert. This specimen is the earliest convincing fossil evidence for the Polyporales.[33]
Molecular clock techniques have been used to estimate the age of the Polyporales, suggesting that the order evolved either during the late Jurassic, about 203–250 Ma,[34] or, in more recent study, about 114 Ma.[35]
Genera Incertae sedis
There are several genera classified in the Polyporales that for various reason have not been assigned to a specific family. They are incertae sedis with respect to familial placement. Some may be poorly known and/or not included in DNA phylogenetic studies, or when they have been, did not clearly group with any named family (In some cases a new family must be created rather than the placement clarified.). These include:
- Crustodontia Hjortstam & Ryvarden (2005)[36]
- Crystallocystidium (Rick) Rick (1940)
- Globosomyces Jülich (1980)[37]
- Globuliciopsis Hjortstam & Ryvarden (2004)[38]
- Irpicochaete Rick (1940)
- Nigrohydnum Ryvarden (1987)[39]
- Obba Miett. & Rajchenb. (2012)[40]
- Phaeophlebiopsis D.Floudas & Hibbett (2015)[41]
- Phlebiella P.Karst. (1890)
- Repetobasidiopsis Dhingra & Avn.P.Singh (2008)[42]
- Rickiopora Westphalen, Tomšovský & Rajchenb. (2016)[43]
- Sebipora Miett. (2012)[40]
- Taiwanofungus Sheng H.Wu, Z.H.Yu, Y.C.Dai & C.H.Su (2004)[44]
References
- ↑ Zhao CL, Cui BK, Song J, Dai YC (August 2014). "Fragiliporiaceae, a new family of Polyporales (Basidiomycota)". Fungal Diversity. doi:10.1007/s13225-014-0299-0.
- ↑ "Trametales Boidin". MycoBank. International Mycological Association. Retrieved 2016-10-16.
- ↑ Rea, Carleton (1922). British Basidiomycetae: A Handbook to the Larger British Fungi. Cambridge, UK: Cambridge University Press. p. 574.
- ↑ Boidin, J.; Mugnier, J.; Canales, R. (1998). "Taxonomie moleculaire des Aphyllophorales". Mycotaxon (in French). 66: 445–491 (see p. 487).
- ↑ Gäumann, E. (1926). Vergleichende Morphologie der Pilze. Jena: Gustav Fischer.
- ↑ Hawksworth DL, Kirk PM, Sutton BC, Pegler DN. (eds) (1995). Dictionary of the Fungi (8th ed.). Wallingford, Oxford: CAB International. ISBN 0-85198-885-7.
- ↑ Hibbett DS. (2006). "A phylogenetic overview of the Agaricomycotina". Mycologia. 98: 917–925. doi:10.3852/mycologia.98.6.917. http://www1.univap.br/drauzio/index_arquivos/Myco09.pdf
- ↑ Binder M, et al. (2005). "The phylogenetic distribution of resupinate forms across the major clades of mushroom-forming fungi (Homobasidiomycetes)". Systematics and Biodiversity'. 3: 113–157. doi:10.1017/s1477200005001623.
- 1 2 3 Binder, Manfred; Justo, Alfredo; Riley, Robert; Salamov, Asaf; Lopez-Giraldez, Francesc; Sjökvist, Elisabet; Copeland, Alex; Foster, Brian; Sun, Hui; Larsson, Ellen; Larsson, Karl-Henrik; Townsend, Jeffrey; Grigoriev, Igor V.; Hibbett, David S. (2013). "Phylogenetic and phylogenomic overview of the Polyporales". Mycologia. 105 (6): 1350–1373. PMID 23935031. doi:10.3852/13-003.
- ↑ http://www.indexfungorum.org/Names/Names.asp
- 1 2 3 4 Justo, Alfredo; Miettinen, Otto; Floudas, Dimitrios; Ortiz-Santana, Beatriz; Sjökvist, Elisabet; Lindner, Daniel; Nakasone, Karen; Niemelä, Tuomo; Larsson, Karl-Henrik; Ryvarden, Leif; Hibbett, David S. (2017). "A revised family-level classification of the Polyporales (Basidiomycota)". Fungal Biology. doi:10.1016/j.funbio.2017.05.010.
- ↑ Miettinen, Otto; Larsson, Ellen; Sjökvist, Elisabet; Larsson, Karl-Henrik (2012). "Comprehensive taxon sampling reveals unaccounted diversity and morphological plasticity in a group of dimitic polypores (Polyporales, Basidiomycota)" (PDF). Cladistics. 28: 251–270. doi:10.1111/j.1096-0031.2011.00380.x.
- ↑ Miettinen, Otto; Ryvarden, Leif (2016). "Polypore genera Antella, Austeria, Butyrea, Citripora, Metuloidea and Trulla (Steccherinaceae, Polyporales)". Annales Botanici Fennici. 53 (3–4): 157–172. doi:10.5735/085.053.0403.
- ↑ Kotiranta, Heikki; Kulju, Matti; Miettinen, Otto (2017). "Caudicicola gracilis (Polyporales, Basidiomycota), a new polypore species and genus from Finland". Annales Botanici Fennici. 54: 159–167. doi:10.5735/085.054.0325.
- ↑ Reinprecht, Ladislav (2016). Wood Deterioration, Protection and Maintenance. Wiley. p. 147. ISBN 978-1-119-10651-7.
- ↑ Ulbricht, C.; Weissner, W.; Basch, E.; Giese, N.; Hammerness, P.; Rusie-Seamon, E.; Varghese, M.; Woods, J. (2009). "Maitake mushroom (Grifola frondosa): systematic review by the natural standard research collaboration". J Soc Integr Oncol. 7 (2): 66–72. PMID 19476741.
- ↑ Lee, Kuo-Hsiung; Morris-Natschke, Susan L.; Yang, Xiaoming; Huang, Rong; Zhou, Ting; Wu, Shou-Fan; Shi, Qian; Itokawa, Hideji (2012). "Recent progress of research on medicinal mushrooms, foods, and other herbal products used in traditional Chinese medicine". Journal of Traditional and Complementary Medicine. 2 (2): 84–95. PMC 3942920 . PMID 24716120.
- ↑ Lau, B.F.; Abdullah, N.; Aminudin, N.; Lee, H.B.; Tan, P.J. (2015). "Ethnomedicinal uses, pharmacological activities, and cultivation of Lignosus spp. (tiger׳s milk mushrooms) in Malaysia – A review". Journal of Ethnopharmacology. 169: 441–458. doi:10.1016/j.jep.2015.04.042.
- ↑ Slaven, Zjalic; Adele, Fabbri Anna; Alessandra, Ricelli; Corrado, Fanelli; Massimo, Reverberi (2008). "Medicinal mushrooms". In Ray, Ramesh C.; Ward, Owen P. Microbial Biotechnology in Horticulture. CRC Press. p. 308. ISBN 978-1-57808-520-0.
- ↑ Grienke, Ulrike; Zöll, Margit; Peintner, Ursula; Rollinger, Judith M. (2016). "European medicinal polypores—a modern view on traditional uses". Journal of Ethnopharnacology. 154 (3): 564–583. PMID 24786572. doi:10.1016/j.jep.2014.04.030.
- ↑ Kuo, Michael (2007). 100 Edible Mushrooms. Ann Arbor, Michigan: The University of Michigan Press. pp. 79–84; 108–110. ISBN 978-0-472-03126-9.
- ↑ Newton, John (2016). The Oldest Foods on Earth: A History of Australian Native Foods with Recipes. NewSouth. p. 29. ISBN 978-1-74224-226-2.
- ↑ McLean, Robert Colquhoun; Cook, Walter Robert Ivimey (1951). Textbook of Theoretical Botany. Longmans, Green. p. 317.
- ↑ Pegler D. (2001). "Useful fungi of the world: Amadou and Chaga". Mycologist. 15 (4): 153–154. doi:10.1016/S0269-915X(01)80004-5.
In Germany, this soft, pliable 'felt' has been harvested for many years for a secondary function, namely in the manufacture of hats, dress adornments and purses.
- ↑ Chen S, Xu J, Liu C, Zhu Y, Nelson DR, Zhou S, Li C, Wang L, Guo X, Sun Y, Luo H, Li Y, Song J, Henrissat B, Levasseur A, Qian J, Li J, Luo X, Shi L, He L, Xiang L, Xu X, Niu Y, Li Q, Han MV, Yan H, Zhang J, Chen H, Lv A, Wang Z, Liu M, Schwartz DC, Sun C (2012). "Genome sequence of the model medicinal mushroom Ganoderma lucidum". Nature Communications (3): 913. PMC 3621433 . PMID 22735441. doi:10.1038/ncomms1923.
- ↑ Yap, H.Y.; Chooi, Y.H.; Firdaus-Raih, M.; Fung, S.Y.; Ng, S.T.; Tan, C.S.; Tan, N.H. (2014). "The genome of the Tiger Milk mushroom, Lignosus rhinocerotis, provides insights into the genetic basis of its medicinal properties". BMC Genomics. 15: 635. PMC 4129116 . PMID 25073817. doi:10.1186/1471-2164-15-635.
- 1 2 3 4 Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar R, Spatafora JW, Yadav JS, Aerts A, Benoit I, Boyd A, Carlson A, Copeland A, Coutinho PM, de Vries RP, Ferreira P, Findley K, Foster B, Gaskell J, Glotzer D, Górecki P, Heitman J, Hesse C, Hori C, Igarashi K, Jurgens JA, Kallen N, Kersten P, Kohler A, Kües U, Kumar TK, Kuo A, LaButti K, Larrondo LF, Lindquist E, Ling A, Lombard V, Lucas S, Lundell T, Martin R, McLaughlin DJ, Morgenstern I, Morin E, Murat C, Nagy LG, Nolan M, Ohm RA, Patyshakuliyeva A, Rokas A, Ruiz-Dueñas FJ, Sabat G, Salamov A, Samejima M, Schmutz J, Slot JC, St John F, Stenlid J, Sun H, Sun S, Syed K, Tsang A, Wiebenga A, Young D, Pisabarro A, Eastwood DC, Martin F, Cullen D, Grigoriev IV, Hibbett DS (2012). "The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes". Science. 336 (6089): 1715–1719. Bibcode:2012Sci...336.1715F. PMID 22745431. doi:10.1126/science.1221748.
- ↑ Martinez D, Larrondo LF, Putnam N, Gelpke MD, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho PM, Henrissat B, Berka R, Cullen D, Rokhsar D (2004). "Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78". Nature Biotechnology. 22 (6): 695–700. PMID 15122302. doi:10.1038/nbt967.
- ↑ Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP, Ferreira P, Ruiz-Duenas FJ, Martinez AT, Kersten P, Hammel KE, Vanden Wymelenberg A, Gaskell J, Lindquist E, Sabat G, Bondurant SS, Larrondo LF, Canessa P, Vicuna R, Yadav J, Doddapaneni H, Subramanian V, Pisabarro AG, Lavín JL, Oguiza JA, Master E, Henrissat B, Coutinho PM, Harris P, Magnuson JK, Baker SE, Bruno K, Kenealy W, Hoegger PJ, Kües U, Ramaiya P, Lucas S, Salamov A, Shapiro H, Tu H, Chee CL, Misra M, Xie G, Teter S, Yaver D, James T, Mokrejs M, Pospisek M, Grigoriev IV, Brettin T, Rokhsar D, Berka R, Cullen D. (2009). "Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion". Proceedings of the National Academy of Sciences USA. 106 (6): 1954–1959. PMC 2644145 . PMID 19193860. doi:10.1073/pnas.0809575106.
- ↑ Kameshwar, Ayyappa Kumar Sista; Qin, Wensheng (2017). "Metadata Analysis of Phanerochaete chrysosporium gene expression data identified common CAZymes encoding gene expression profiles involved in cellulose and hemicellulose degradation". 13 (1): 85–99. PMC 5264264 . PMID 28123349. doi:10.7150/ijbs.17390.
- ↑ Vanden Wymelenberg A.; Jill Gaskell; Michael Mozuch; Grzegorz Sabat; John Ralph; Oleksandr Skyba; Shawn D. Mansfield; Robert A. Blanchette; Diego Martinez; Igor Grigoriev; Philip J. Kersten; Dan Cullen (2010). "Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium". Applied and Environmental Microbiology. 76 (11): 3599–3610. PMC 2876446 . doi:10.1128/AEM.00058-10.
- ↑ Brown, Roland W. (1940). "A bracket fungus from the late Tertiary of southwestern Idaho". Journal of the Washington Academy of Sciences. 30 (10): 422–424. JSTOR 24529677.
- ↑ Fleischmann, Andreas; Krings, Michael; Mayr, Helmut; Agerer, Reinhard (2007). "Structurally preserved polypores from the Neogene of North Africa: Ganodermites libycus gen. et sp. nov. (Polyporales, Ganodermataceae)". Review of Palaeobotany and Palynology. 145 (1–2): 159–172. doi:10.1016/j.revpalbo.2006.10.001.
- ↑ Garcia-Sandoval, R.; Wang, Z.; Binder, M.; Hibbett, D.S. (2011). "Molecular phylogenetics of the Gloeophyllales and relative ages of clades of Agaricomycotina producing a brown rot". Mycologia. 103 (1): 510–524. PMID 21186327. doi:10.3852/10-209.
- ↑ Zhao, Rui-Lin; Li, Guo-Jie; Sánchez-Ramírez, Santiago; Stata, Matt; Yang, Zhu-Liang; Wu, Gang; Dai, Yu-Cheng; He, Shuang-Hui; Cui, Bao-Kai; Zhou, Jun-Liang; Wu, Fang; He, Mao-Qiang; Moncalvo, Jean-Marc (2017). "A six-gene phylogenetic overview of Basidiomycota and allied phyla with estimated divergence times of higher taxa and a phyloproteomics perspective". 84 (1): 43–74. doi:10.1007/s13225-017-0381-5.
- ↑ Hjortstam K, Ryvarden L (2005). "New taxa and new combinations in tropical corticioid fungi, (Basidiomycotina, Aphyllophorales)". 20: 33–41.
- ↑ Jülich W. (1980). "Notulae et novitates Muluenses". Botanical Journal of the Linnean Society. 81: 43–6. doi:10.1111/j.1095-8339.1980.tb00940.x.
- ↑ Hjortstam K, Ryvarden L (2004). "Some new tropical genera and species of corticioid fungi (Basidiomycotina, Aphyllophorales)". Synopsis Fungorum. 18: 20–32.
- ↑ Ryvarden L. (1987). "New and noteworthy polypores from tropical America". Mycotaxon. 28 (2): 525–41 (see p. 532).
- 1 2 Miettinen, O.; Rajchenberg, M. (2012). "Obba and Sebipora, new polypore genera related to Cinereomyces and Gelatoporia (Polyporales, Basidiomycota)". Mycological Progress. 11 (1): 131–147. doi:10.1007/s11557-010-0736-8.
- ↑ Floudas, D.; Hibbett, D.S. (2015). "Revisiting the taxonomy of Phanerochaete (Polyporales, Basidiomycota) using a four gene dataset and extensive ITS sampling". Fungal Biology. 119 (8): 679–719. PMID 26228559. doi:10.1016/j.funbio.2015.04.003.
- ↑ Dhingra, G.S.; Singh, Avneet P. (2008). "Validation of Repetobasidiopsis and Trimitiella (Basidiomycetes)". Mycotaxon. 105: 421–422.
- ↑ Westphalen, Mauro C.; Rajchenberg, Mario; Tomšovský, Michal; Gugliotta, Adriana M. (2016). "Extensive characterization of the new genus Rickiopora (Polyporales)". Fungal Biology. 120 (8): 1002–1009. doi:10.1016/j.funbio.2016.05.001.
- ↑ Wu SH, Yu ZH, Dai YC, Chen CT, Su CH, Chen LC, Hsu WC, Hwang GY (2004). "Taiwanofungus, a polypore new genus". Fungal Science (in Chinese). 19 (3–4): 109–116.
Media related to Polyporales at Wikimedia Commons Data related to Polyporales at Wikispecies