''Pioneer 6'', ''7'', ''8'', and ''9''

Pioneer 6, 7, 8, and 9
Artist's conception of the Pioneer 69 spacecraft.
Mission type Interplanetary space
Operator NASA
COSPAR ID 1965-105A (Pioneer 6)
1966-075A (Pioneer 7)
1967-123A (Pioneer 8)
1968-100A (Pioneer 9)
Spacecraft properties
Manufacturer TRW
Launch mass 146, 138, 146, 147 kg
Power 79 W
Start of mission
Launch date Pioneer 6: December 16, 1965, 07:31:00 (1965-12-16UTC07:31Z) UTC
Pioneer 7: August 17, 1966, 15:20:00 (1966-08-17UTC15:20Z) UTC
Pioneer 8: December 13, 1967, 14:08:00 (1967-12-13UTC14:08Z) UTC
Pioneer 9: November 08, 1968, 09:46:00 (1968-11-08UTC09:46Z) UTC
Rocket Delta-E
Launch site Cape Canaveral LC-17A
Orbital parameters
Reference system Heliocentric
Perihelion between 0.7 to 1 AU
Apohelion between 0.9 to 1.2 AU

Pioneer 6, 7, 8, and 9 were space probes in the Pioneer program. Together, they formed a series of solar-orbiting, spin-stabilized, solar-cell and battery-powered satellites designed to obtain measurements on a continuing basis of interplanetary phenomena from widely separated points in space. They were also known as Pioneer A, B, C, and D. The fifth (Pioneer E) was lost in a launch accident.

Purpose

Pioneers 6, 7, 8, and 9 were created to make the first detailed, comprehensive measurements of the solar wind, solar magnetic field and cosmic rays. They were designed to measure large scale magnetic phenomena and particles and fields in interplanetary space. Data from the vehicles has been used to better understand stellar processes and the structure and flow of the solar wind. The vehicles also acted as the world's first space-based solar weather network, providing practical data on solar storms which impact communications and power on Earth.

The experiments studied the positive ions (cations) and electrons in the solar wind, the interplanetary electron density (radio propagation experiment), solar and galactic cosmic rays, and the Interplanetary Magnetic Field.

Vehicle description

Each craft was identical, with an on-orbit dry mass of 146 kg. They were spin-stabilized 0.94 m diameter × 0.81 m tall cylinders with a 1.8 m long magnetometer boom and solar panels mounted around the body.

The main antenna was a high-gain directional antenna. The spacecraft were spin-stabilized at about 1 Hz, and the spin axis was perpendicular to the ecliptic plane and pointed toward the south ecliptic pole.

Instruments:

  • Solar Wind Plasma Faraday Cup (6,7)
  • Cosmic-Ray Telescope (6,7)
  • Electrostatic Analyzer (6,7,8)
  • Superior Conjunction Faraday Rotation (6,7)
  • Spectral Broadening (6)
  • Relativity Investigation (6)
  • Uniaxial Fluxgate Magnetometer (6)
  • Cosmic-Ray Anisotropy (6,7,8,9)
  • Celestial Mechanics (6,7,8,9)
  • Two-Frequency Beacon Receiver (6,7,8,9)
  • Single-Axis Magnetometer (7,8)
  • Cosmic Dust Detector (8,9)
  • Cosmic Ray Gradient Detector (8,9)
  • Plasma Wave Detector (8)
  • Triaxial Magnetometer (9)
  • Solar Plasma Detector (9)
  • Electric Field Detector (9)

Communications

By ground command, one of five bit rates, one of four data formats, and one of four operating modes could be selected. The five bit rates were 512, 256, 64, 16, and 8 bit/s. Three of the four data formats contained primarily scientific data and consisted of 32 seven-bit words per frame. One scientific data format was for use at the two highest bit rates. Another was for use at the three lowest bit rates. The third contained data from only the radio propagation experiment. The fourth data format contained mainly engineering data.

The four operating modes were: real time, telemetry store, duty cycle store, and memory readout. In the real-time mode, data were sampled and transmitted directly (without storage) as specified by the data format and bit rate selected. In the telemetry store mode, data were stored and transmitted simultaneously in the format and at the bit rate selected. In the duty-cycle store mode, a single frame of scientific data was collected and stored at a rate of 512 bit/s. The time interval between the collection and storage of successive frames could be varied by ground command between 2 and 17 min to provide partial data coverage for periods up to 19 hours, as limited by the bit storage capacity. In the memory readout mode, data was read out at whatever bit rate was appropriate to the satellite distance from Earth.

Time line and current status

As stated by JPL, "The Pioneer 6–9 program has been touted as one of the least expensive of all NASA spacecraft programs in terms of scientific results per dollar spent."[1] Although the spacecraft have not been regularly tracked for science data return in recent years, a successful telemetry contact with Pioneer 6 was made on December 8, 2000 to celebrate 35 years of continuous operation since launch. Its original design life expectancy was only 6 months.

Although NASA described Pioneer 6 as "extant" as of 26 March 2007,[2] there has been no contact since December 8, 2000. At this time Pioneer 6 had operated for 12,758 days, making it the oldest operating space probe until it was surpassed by Voyager 2 on August 13, 2012.[3] It is also believed that contact is still possible with Pioneer 7 and 8, only Pioneer 9 is definitely not working.

Launch of Pioneer 6 on a Delta-E rocket

Pioneer 6

December 16, 1965 Launched at 07:31:00 UTC from Cape Canaveral to a circular solar orbit with a mean distance of 0.8 AU.

December 1995 The prime Traveling-wave tube (TWT) failed some time after December 1995.

July 1996 Spacecraft commanded to the backup TWT.

October 6, 1997 Tracked with the 70 meter Deep Space Station 43 in Australia. The MIT and ARC Plasma Analyzers as well as the cosmic ray detector from University of Chicago were turned on and working.

December 8, 2000 Successful telemetry contact for about two hours.

Pioneer 7

August 17, 1966 Launched from Cape Canaveral into solar orbit with a mean distance of 1.1 AU.

March 20, 1986 Flew within 12.3 million kilometers of Halley's Comet and monitored the interaction between the cometary hydrogen tail and the solar wind. It discovered He+ plasma produced by charge exchange of solar wind He++ with neutral cometary material.[4]

March 31, 1995 Tracked successfully. The spacecraft and one of the science instruments were still functioning.

Pioneer 8

December 13, 1967 Launched at 14:08:00 UTC from Cape Canaveral into solar orbit with a mean distance of 1.1 AU from the Sun.

August 22, 1996 The spacecraft commanded to switch to the backup TWT. Downlink signal was re-acquired, one of the science instruments again functioning.

Pioneer 9

November 8, 1968 Launched at 09:46:00 UTC from Cape Canaveral into solar orbit with a mean distance of 0.8 AU.

1983 Spacecraft failed.[5]

Pioneer E

August 27, 1969 Launched at 21:59:00 UTC from Cape Canaveral. The launch vehicle was destroyed by range safety after hydraulics in the first stage failed.[1]

References

  1. 1 2 "Pioneer 6, 7, 8, 9, E Quicklook". Jet Propulsion Laboratory. Archived from the original on 21 July 2010.
  2. NASA - The Pioneer Missions Accessed 2009-08-27
  3. "Voyager at 35 - Break on Through to the Other Side". nasa.gov. Retrieved 5 May 2015.
  4. Mihalov, J. D.; Collard, H. R.; Intriligator, D. S.; Barnes, A. "Observation by Pioneer 7 of He+ in the distant coma of Halley's comet". Icarus. 71: 192–197. Bibcode:1987Icar...71..192M. doi:10.1016/0019-1035(87)90172-2.
  5. "Pioneer 9". NASA. Retrieved 20 July 2015.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.