Perceived performance
Perceived performance, in computer engineering, refers to how quickly a software feature appears to perform its task. The concept applies mainly to user acceptance aspects.
The amount of time an application takes to start up, or a file to download, is not made faster by showing a startup screen (see Splash screen) or a file progress dialog box. However, it satisfies some human needs: it appears faster to the user as well as providing a visual cue to let them know the system is handling their request.
In most cases, increasing real performance increases perceived performance, but when real performance cannot be increased due to physical limitations, techniques can be used to increase perceived performance at the cost of marginally decreasing real performance. For example, drawing and refreshing a progress bar while loading a file satisfies the user who is watching, but steals time from the process that is actually loading the file, but usually this is only a very small amount of time. All such techniques must exploit the inability of the user to accurately judge real performance, or they would be considered detrimental to performance.
Techniques for improving perceived performance may include more than just decreasing the delay between the user's request and visual feedback. Sometimes an increase in delay can be perceived as a performance improvement, such as when a variable controlled by the user is set to a running average of the users input. This can give the impression of smoother motion, but the controlled variable always reaches the desired value a bit late. Since it smooths out hi-frequency jitter, when the user is attempting to hold the value constant, they may feel like they are succeeding more readily. This kind of compromise would be appropriate for control of a sniper rifle in a video game. Another example may be doing trivial computation ahead of time rather than after a user triggers an action, such as pre-sorting a large list of data before a user wants to see it.
A technique to measure and interpret perceived performance remote systems is shown in a 2003[1] and updated in 2005 for virtual machines.[2]