Chamfer (geometry)
A chamfered cube can be constructed by reducing the square faces, and connecting new edges to vertices at the original positions. Topologically: (v,e,f) --> (v+2e,4e,f+e) |
In geometry, chamfering or edge-truncation is a topological operator that modifies one polyhedron into another. It is similar to expansion, moving faces apart and outward, but also maintain the original vertices. For polyhedra, this operation adds a new hexagonal face in place of each original edge.
In Conway polyhedron notation it is represented by the letter c. A polyhedron with e edges will have a chamfered form containing 2e new vertices, 3e new edges, and e new hexagonal faces.
Chamfered regular and quasiregular polyhedra
Class | Regular | Quasiregular | |||||
---|---|---|---|---|---|---|---|
Seed | {3,3} |
{4,3} |
{3,4} |
{5,3} |
{3,5} |
aC |
aD |
Chamfered | cT |
cC |
cO |
cD |
cI |
caC |
caD |
Relation to Goldberg polyhedra
The chamfer operation applied in series creates progressively larger polyhedra with new hexagonal faces replacing edges from the previous one. The chamfer operator transforms GP(m,n) to GP(2m,2n).
A regular polyhedron, GP(1,0), create a Goldberg polyhedra sequence: GP(1,0), GP(2,0), GP(4,0), GP(8,0), GP(16,0)...
GP(1,0) | GP(2,0) | GP(4,0) | GP(8,0) | GP(16,0)... | |
---|---|---|---|---|---|
GPIV {4+,3} |
C |
cC |
ccC |
cccC |
|
GPV {5+,3} |
D |
cD |
ccD |
cccD |
ccccD |
GPVI {6+,3} |
H |
cH |
ccH |
cccH |
ccccH |
The truncated octahedron or truncated icosahedron, GP(1,1) creates a Goldberg sequence: GP(1,1), GP(2,2), GP(4,4), GP(8,8)....
GP(1,1) | GP(2,2) | GP(4,4)... | |
---|---|---|---|
GPIV {4+,3} |
tO |
ctO |
cctO |
GPV {5+,3} |
tI |
ctI |
cctI |
GPVI {6+,3} |
tH |
ctH |
cctH |
A truncated tetrakis hexahedron or pentakis dodecahedron, GP(3,0), creates a Goldberg sequence: GP(3,0), GP(6,0), GP(12,0)...
GP(3,0) | GP(6,0) | GP(12,0)... | |
---|---|---|---|
GPIV {4+,3} |
tkC |
ctkC | cctkC |
GPV {5+,3} |
tkD |
ctkD |
cctkD |
GPVI {6+,3} |
tkH |
ctkH |
cctkH |
Chamfered regular tilings
Square tiling, Q {4,4} |
Triangular tiling, Δ {3,6} |
Hexagonal tiling, H {6,3} | ||
cQ | cΔ | cH |
Chamfered polytopes and honeycombs
Like the expansion operation, chamfer can be applied to any dimension. For polygons, it triples the number of vertices. For polychora, new cells are created around the original edges, The cells are prisms, containing two copies of the original face, with pyramids augmented onto the prism sides.
Chamfered tetrahedron
Chamfered tetrahedron | |
---|---|
Conway notation | cT |
Goldberg polyhedron | GPIII(2,0) = {3+,3}2,0 |
Faces | 4 triangles 6 hexagons |
Edges | 24 (2 types) |
Vertices | 16 (2 types) |
Vertex configuration | (12) 3.6.6 (4) 6.6.6 |
Symmetry group | Tetrahedral (Td) |
Dual polyhedron | Alternate-triakis octahedron |
Properties | convex, equilateral-faced |
The chamfered tetrahedron (or alternate truncated cube) is a convex polyhedron constructed as an alternately truncated cube or chamfer operation on a tetrahedron, replacing its 6 edges with hexagons.
It is the Goldberg polyhedron GIII(2,0), containing triangular and hexagonal faces.
It can look a little like a truncated tetrahedron, , which has 4 hexagonal and 4 triangular faces, which is the related Goldberg polyhedron: GIII(1,1).
Net
Chamfered cube
Chamfered cube | |
---|---|
Conway notation | cC = t4daC |
Goldberg polyhedron | GPIV(2,0) = {4+,3}2,0 |
Faces | 6 squares 12 hexagons |
Edges | 48 (2 types) |
Vertices | 32 (2 types) |
Vertex configuration | (24) 4.6.6 (8) 6.6.6 |
Symmetry | Oh, [4,3], (*432) Th, [4,3+], (3*2) |
Dual polyhedron | Tetrakis cuboctahedron |
Properties | convex, zonohedron, equilateral-faced |
net |
In geometry, the chamfered cube (also called truncated rhombic dodecahedron) is a convex polyhedron constructed from the rhombic dodecahedron by truncating the 6 (order 4) vertices.
The 6 vertices are truncated such that all edges are equal length. The original 12 rhombic faces become flattened hexagons, and the truncated vertices become squares.
The hexagonal faces are equilateral but not regular. They are formed by a truncated rhombus, have 2 internal angles of about 109.47 degrees () and 4 internal angles of about 125.26 degrees, while a regular hexagon would have all 120 degree angles.
Because all its faces have an even number of sides with 180 degree rotation symmetry, it is a zonohedron. It is also the Goldberg polyhedron GIV(2,0), containing square and hexagonal faces.
Coordinates
The chamfered cube is the Minkowski sum of a rhombic dodecahedron and a cube of side length 1 when eight vertices of the rhombic dodecahedron are at and its six vertices are at the permutations of .
Variations
The chamfered cube can be constructed with pyritohedral symmetry and rectangular faces. This can be seen as a pyritohedron with 6 axial edges planned. This occurs in pyrite crystals.
Uses in tessellations
We can construct a truncated octahedron model by twenty four chamfered cube blocks.[1] [2]
Related
This polyhedron looks similar to the uniform truncated octahedron:
Chamfered cube |
Truncated octahedron |
---|
Chamfered octahedron
Chamfered octahedron | |
---|---|
Conway notation | cO = t3daO |
Faces | 8 triangles 12 hexagons |
Edges | 48 (2 types) |
Vertices | 30 (2 types) |
Vertex configuration | (24) 3.6.6 (6) 6.6.6 |
Symmetry | Oh, [4,3], (*432) |
Dual polyhedron | Triakis cuboctahedron |
Properties | convex |
In geometry, the chamfered octahedron is a convex polyhedron constructed from the rhombic dodecahedron by truncating the 8 (order 3) vertices.
The 8 vertices are truncated such that all edges are equal length. The original 12 rhombic faces become flattened hexagons, and the truncated vertices become triangles.
The hexagonal faces are equilateral but not regular.
Chamfered icosahedron
Chamfered icosahedron | |
---|---|
Conway notation | cI = t3daI |
Faces | 20 triangles 30 hexagons |
Edges | 120 (2 types) |
Vertices | 72 (2 types) |
Vertex configuration | (24) 3.6.6 (12) 6.6.6 |
Symmetry | Ih, [5,3], (*532) |
Dual polyhedron | triakis icosidodecahedron |
Properties | convex |
In geometry, the chamfered icosahedron is a convex polyhedron constructed from the rhombic triacontahedron by truncating the 20 order-3 vertices. The hexagonal faces can be made equilateral but not regular.
See also
References
- Goldberg, Michael (1937). "A class of multi-symmetric polyhedra". Tohoku Mathematical Journal.
- Joseph D. Clinton, Clinton’s Equal Central Angle Conjecture
- Hart, George (2012). "Goldberg Polyhedra". In Senechal, Marjorie. Shaping Space (2nd ed.). Springer. pp. 125–138. doi:10.1007/978-0-387-92714-5_9.
- Hart, George (June 18, 2013). "Mathematical Impressions: Goldberg Polyhedra". Simons Science News.
- Antoine Deza, Michel Deza, Viatcheslav Grishukhin, Fullerenes and coordination polyhedra versus half-cube embeddings, 1998 PDF (p. 72 Fig. 26. Chamfered tetrahedron)
- Deza, A.; Deza, M.; Grishukhin, V. (1998), "Fullerenes and coordination polyhedra versus half-cube embeddings", Discrete Mathematics, 192 (1): 41–80, doi:10.1016/S0012-365X(98)00065-X, archived from the original on 2007-02-06.
External links
- Chamfered Tetrahedron
- Chamfered Solids
- Vertex- and edge-truncation of the Platonic and Archimedean solids leading to vertex-transitive polyhedra Livio Zefiro
- VRML polyhedral generator (Conway polyhedron notation)
- VRML model Chamfered cube
- 3.2.7. Systematic numbering for (C80-Ih) [5,6] fullerene
- Fullerene C80
- How to make a chamfered cube