5-orthoplex

Regular 5-orthoplex
(pentacross)

Orthogonal projection
inside Petrie polygon
TypeRegular 5-polytope
Familyorthoplex
Schläfli symbol {3,3,3,4}
{3,3,31,1}
Coxeter-Dynkin diagrams
4-faces32 {33}
Cells80 {3,3}
Faces80 {3}
Edges40
Vertices10
Vertex figure
16-cell
Petrie polygondecagon
Coxeter groupsBC5, [3,3,3,4]
D5, [32,1,1]
Dual5-cube
Propertiesconvex

In five-dimensional geometry, a 5-orthoplex, or 5-cross polytope, is a five-dimensional polytope with 10 vertices, 40 edges, 80 triangle faces, 80 tetrahedron cells, 32 5-cell 4-faces.

It has two constructed forms, the first being regular with Schläfli symbol {33,4}, and the second with alternately labeled (checkerboarded) facets, with Schläfli symbol {3,3,31,1} or Coxeter symbol 211.

It is a part of an infinite family of polytopes, called cross-polytopes or orthoplexes. The dual polytope is the 5-hypercube or 5-cube.

Alternate names

Cartesian coordinates

Cartesian coordinates for the vertices of a 5-orthoplex, centered at the origin are

(±1,0,0,0,0), (0,±1,0,0,0), (0,0,±1,0,0), (0,0,0,±1,0), (0,0,0,0,±1)

Construction

There are three Coxeter groups associated with the 5-orthoplex, one regular, dual of the penteract with the C5 or [4,3,3,3] Coxeter group, and a lower symmetry with two copies of 5-cell facets, alternating, with the D5 or [32,1,1] Coxeter group, and the final one as a dual 5-orthotope, called a 5-fusil which can have a variety of subsymmetries.

Name Coxeter diagram Schläfli symbol Symmetry Order Vertex figure(s)
regular 5-orthoplex {3,3,3,4} [3,3,3,4]3840
Alternate 5-orthoplex {3,3,31,1} [3,3,31,1]1920
5-fusil
{3,3,3,4}[4,3,3,3]3840
{3,3,4}+{}[4,3,3,2]768
{3,4}+{4}[4,3,2,4]384
{3,4}+2{}[4,3,2,2]192
2{4}+{}[4,2,4,2]128
{4}+3{}[4,2,2,2]64
5{} [2,2,2,2]32

Other images

orthographic projections
Coxeter plane B5 B4 / D5 B3 / D4 / A2
Graph
Dihedral symmetry [10] [8] [6]
Coxeter plane B2 A3
Graph
Dihedral symmetry [4] [4]

The perspective projection (3D to 2D) of a stereographic projection (4D to 3D) of the Schlegel diagram (5D to 4D) of the 5-orthoplex. 10 sets of 4 edges form 10 circles in the 4D Schlegel diagram: two of these circles are straight lines in the stereographic projection because they contain the center of projection.

This polytope is one of 31 uniform 5-polytopes generated from the B5 Coxeter plane, including the regular 5-cube and 5-orthoplex.

References

Fundamental convex regular and uniform polytopes in dimensions 2–10
Family An Bn I2(p) / Dn E6 / E7 / E8 / E9 / E10 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform 4-polytope 5-cell 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.