Parabiaugmented hexagonal prism

Parabiaugmented hexagonal prism
Type Johnson
J54 - J55 - J56
Faces 2x4 triangles
4 squares
2 hexagons
Edges 26
Vertices 14
Vertex configuration 4(42.6)
2(34)
8(32.4.6)
Symmetry group D2h
Dual polyhedron -
Properties convex
Net

In geometry, the parabiaugmented hexagonal prism is one of the Johnson solids (J55). As the name suggests, it can be constructed by doubly augmenting a hexagonal prism by attaching square pyramids (J1) to two of its nonadjacent, parallel (opposite) equatorial faces. Attaching the pyramids to nonadjacent, nonparallel equatorial faces yields a metabiaugmented hexagonal prism. (The solid obtained by attaching pyramids to adjacent equatorial faces is not convex, and thus not a Johnson solid.)

A Johnson solid is one of 92 strictly convex polyhedra that have regular faces but are not uniform (that is, they are not Platonic solids, Archimedean solids, prisms or antiprisms). They were named by Norman Johnson, who first listed these polyhedra in 1966.[1]

  1. Johnson, Norman W. (1966), "Convex polyhedra with regular faces", Canadian Journal of Mathematics, 18: 169–200, MR 0185507, Zbl 0132.14603, doi:10.4153/cjm-1966-021-8.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.