Mathisson–Papapetrou–Dixon equations

In physics, specifically general relativity, the Mathisson–Papapetrou–Dixon equations describe the motion of a spinning massive object, moving in a gravitational field. Other equations with similar names and mathematical forms are the Mathisson-Papapetrou equations and Papapetrou-Dixon equations. All three sets of equations describe the same physics.

They are named for M. Mathisson,[1] W. G. Dixon,[2] and A. Papapetrou.[3]

Throughout, this article uses the natural units c = G = 1, and tensor index notation.

For a particle of mass m, the Mathisson–Papapetrou–Dixon equations are:[4][5]

where: u is the four velocity (1st order tensor), S the spin tensor (2nd order), R the Riemann curvature tensor (4th order), and the capital "D" indicates the covariant derivative with respect to the particle's proper time s (an affine parameter).

Mathisson–Papapetrou equations

For a particle of mass m, the Mathisson–Papapetrou equations are:[6][7]

using the same symbols as above.

Papapetrou–Dixon equations


See also

References

Notes

  1. M. Mathisson (1937). "Neue Mechanik materieller Systeme". Acta Phys. Polonica. 6. pp. 163–209.
  2. W. G. Dixon (1970). "Dynamics of Extended Bodies in General Relativity. I. Momentum and Angular Momentum" (PDF). Proc. R. Soc. Lond. A. 314. doi:10.1098/rspa.1970.0020.
  3. A. Papapetrou (1951). "Spinning Test-Particles in General Relativity. I" (PDF). Proc. R. Soc. Lond. A. 209. doi:10.1098/rspa.1951.0200.
  4. R. Plyatsko; O. Stefanyshyn; M. Fenyk (2011). "Mathisson-Papapetrou-Dixon equations in the Schwarzschild and Kerr backgrounds". arXiv:1110.1967Freely accessible.
  5. R. Plyatsko; O. Stefanyshyn (2008). "On common solutions of Mathisson equations under different conditions". arXiv:0803.0121Freely accessible.
  6. R. M. Plyatsko; A. L. Vynar; Ya. N. Pelekh (1985). "Conditions for the appearance of gravitational ultrarelativistic spin-orbital interaction". Soviet Physics Journal. 28 (10). Springer. pp. 773–776.
  7. K. Svirskas; K. Pyragas (1991). "The spherically-symmetrical trajectories of spin particles in the Schwarzschild field". Astrophysics and Space Science. 179 (2). Springer. pp. 275–283.

Selected papers

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.