Paleoecology

Paleoecology (also spelled palaeoecology) is the study of interactions between organisms and/or interactions between organisms and their environments across geologic timescales. As a discipline, paleoecology interacts with, depends on and informs a variety of fields including paleontology, ecology, climatology and biology.

Paleoecology emerged out of the field of paleontology in the 1950’s, though paleontologists have conducted paleoecological studies since the creation of paleontology in the 1700s and 1800s. Combining the investigative approach of searching for fossils with the theoretical approach of Charles Darwin and Alexander von Humboldt, paleoecology began as paleontologists began examining both the ancient organisms they discovered and the reconstructed environments in which they lived. Visual depictions of past marine and terrestrial communities has been considered an early form of paleoecology.

Overview of Paleoecological Approaches

Major Principles

Assumptions - While the functions and relationships of fossil organisms may not be observed directly (as in ecology), scientists can describe and analyze both individuals and communities over time. To do so, paleoecologists make the following assumptions:

Paleoecological Methods

Zygospira modesta, atrypid brachiopods, preserved in their original positions on a trepostome bryozoan; Cincinnatian (Upper Ordovician) of southeastern Indiana.

The aim of paleoecology is to build the most detailed model possible of the life environment of previously living organisms found today as fossils. The process of reconstructing past environments requires the use of archives (e.g., sediment sequences), proxies (e.g., the micro or mega-fossils and other sediment characteristics that provide the evidence of the biota and the physical environment), and chronology (e.g., obtaining absolute (or relative) dating of events in the archive). Such reconstruction takes into consideration complex interactions among environmental factors such as temperatures, food supplies, and degree of solar illumination. Often much of this information is lost or distorted by the fossilization process or diagenesis of the enclosing sediments, making interpretation difficult.

The environmental complexity factor is normally tackled through statistical analysis of the available numerical data (quantitative paleontology or paleostatistics), while the study of post-mortem processes is known as the field of taphonomy.

Quaternary

Much of the original paleoecological research has focused on the last two million years (the Quaternary period), because older environments are less well represented in the fossil timeline of evolution. Indeed, many studies concentrate on the Holocene epoch (the last 11,500 years), or the last glacial stage of the Pleistocene epoch (the Wisconsin/Weichsel/Devensian/Würm glaciation of the ice age, from 50,000 to 11,500 years ago). Such studies are useful[2] for understanding the dynamics of ecosystem change and for reconstructing pre-industrialization ecosystems.

Applications of Paleoecology

Paleoecological studies are used to inform conservation, management and restoration efforts.[3][4] In particular, fire-focused paleoecology is an informative field of study to land managers seeking to restore ecosystem fire regimes.

See also

References

  1. Sahney, S., Benton, M.J. and Ferry, P.A. (2010). "Links between global taxonomic diversity, ecological diversity and the expansion of vertebrates on land" (PDF). Biology Letters. 6 (4): 544–547. PMC 2936204Freely accessible. PMID 20106856. doi:10.1098/rsbl.2009.1024.
  2. Charles D.F.; Whitehead D. R.; Engstrom D. R.; et al. (1987) Paleoliminological evidence for recent acidification of Big Moose Lake, Adirondack Mountains, New-York (USA). Biogeochemistry, 3, 267-296, doi=10.1007/BF02185196.
  3. Schoonmaker, Peter K.; Foster, David R. (1991). "Some implications of paleoecology for contemporary ecology". The Botanical Review. 57: 204–245. doi:10.1007/BF02858563.
  4. Seddon, Alistair (2013). "Looking forward through the past: identification of 50 priority research questions in palaeoecology". Journal of Ecology. 102: 256–267. doi:10.1111/1365-2745.12195.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.