Outline of cardiology

The following outline is provided as an overview of and topical guide to cardiology:

Cardiology branch of medicine dealing with disorders of the human heart.[1] The field includes medical diagnosis and treatment of congenital heart defects, coronary artery disease, heart failure, valvular heart disease and electrophysiology. Physicians who specialize in this field of medicine are called cardiologists, a specialty of internal medicine.

What type of thing is cardiology

Cardiology can be described as all of the following:

Branches of cardiology

Anatomy of the heart

Heart

Physical exam

The cardiac physical exam focuses on portions of the physical exam that elucidate information about diseases and disorders outlined below. Clinical judgment, of course, should guide the physical exam but the following are pertinent things related to a general / broad cardiac exam.

Heart disorders

Procedures to counter coronary artery disease

An example of a drug-eluting stent. This is the TAXUS Express2 Paclitaxel-Eluting Coronary Stent System, which releases paclitaxel.

Coronary artery disease is not currently reversible and eventually requires surgical management if it progresses.

Devices used in cardiology

A stethoscope.

Diagnostic tests and procedures

Cardiologists use diagrams like this: a heart with an ECG indicator

Various cardiology diagnostic tests and procedures.

Drugs

There are several classes of pharmaceutical drugs used in cardiology to manage various diseases and a lot of drugs have cardiovascular side effects.

Drugs for the cardiovascular system

Drugs that manipulate the cardiovascular system do so through several ways. The first is ion channels, which are often manipulated to manage arrhythmias. The second is receptors of various types. The third is manipulation of enzymes.

Ion channels

Ion channels are responsible for cell membrane voltage, depolarization, and repolarization. These actions lead to conduction of signals down nerves and contraction of cardiomyocytes. Perhaps the most prominent manipulation of ion channels is through antiarrhythmic agents. These agents are commonly classified by the type of ion they manipulate and named the Vaughan Williams classification:

Specifically, types I, III, & IV manipulate ion channels while the others are not.

Receptors

The adrenergic receptor is a set of receptors that are commonly manipulated. Four properties of the heart — chronotropy, dromotropy, inotropy, & lusitropy — are manipulated by adrenergic receptors. For example, the β1 receptor increases all four of these properties: chrontropy at the SA node, dromotropy through the AV node, inotropy of the cardiomyocytes through increased calcium, and lusitropy through phosphorylation of phospholamban. Catecholamines are a set of drugs and hormones that manipulate the adrenergic receptors. The natural catecholamines are norepinephrine, epinephrine, and dopamine. There are numerous other drugs (e.g., dobutamine, ephedrine, isoproterenol) that manipulate the adrenergic receptors and have variable specificity for the receptors and are, thus, used for various reasons.

Angiotensin II receptor antagonists (ARBs) block the angiotensin II receptors that are linked to hypertension and heart failure, mainly through vasodilation & heart remodeling inhibition.

Enzymes

ACE inhibitors works upstream from angiotensin II receptor antagonists and have similar effects on management of hypertension and heart failure.

Sodium nitroprusside and nitroglycerin function by causing vasodilation through nitric oxide, which manipulates cGMP levels through guanylate cyclase.

COX inhibitors (namely aspirin), warfarin, direct Xa inhibitors, direct thrombin inhibitors, heparin, low-molecular weight heparins, antibodies (e.g., abciximab), and a few others are used for anticoagulation therapy. This is important in those predisposed to blood clots (e.g., Factor V Leiden) but also for thrombus formation when an atherosclerotic plaque rupture that would, otherwise, lead to myocardial infarction.

Drugs with cardiovascular side effects

Numerous drug classes have well-known cardiovascular side effects.

Cardiology organizations

Cardiology publications

Persons influential in cardiology

See also

References

  1. Ashley, Euan A.; Niebauer, Josef (1 January 2004). "Cardiology Explained". Remedica. Retrieved 19 February 2017.
  2. Lackland, DT; Weber, MA (May 2015). "Global burden of cardiovascular disease and stroke: hypertension at the core.". The Canadian journal of cardiology. 31 (5): 569–71. PMID 25795106. doi:10.1016/j.cjca.2015.01.009.
  3. Mendis, Shanthi; Puska, Pekka; Norrving, Bo (2011). Global atlas on cardiovascular disease prevention and control (PDF) (1st ed.). Geneva: World Health Organization in collaboration with the World Heart Federation and the World Stroke Organization. p. 38. ISBN 9789241564373.
  4. "What Are the Signs and Symptoms of an Arrhythmia?". http://www.nhlbi.nih.gov. July 1, 2011. Retrieved 7 March 2015. External link in |website= (help)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.