Phosphite ester
In chemistry a phosphite ester or organophosphite usually refers to an organophosphorous compound with the formula P(OR)3. They can be considered as esters of an unobserved tautomer phosphorous acid, H3PO3, with the simplest example being trimethylphosphite, P(OCH3)3. Some phosphites can be considered esters of the dominant tautomer of phosphorous acid (HP(O)(OH)2). The simplest representative is dimethylphosphite with the formula HP(O)(OCH3)2. Both classes of phosphites are usually colorless liquids.
Synthesis
Phosphite esters are typically prepared by treating phosphorus trichloride with an alcohol. Depending on the synthetic details, this alcoholysis can give the diorganophosphites:[1]
- PCl3 + 3 C2H5OH → (C2H5O)2P(O)H + 2 HCl + C2H5Cl
Alternatively, when the alcoholysis is conducted in the presence of proton acceptors, one obtains the C3-symmetric trialkoxy derivatives:[2]
- PCl3 + 3 C2H5OH + 3 R3N → (C2H5O)3P + 3 R3NHCl
Numerous derivatives have been prepared for both types of phosphites.
Reactions and applications of trialkoxyphosphites
Reactions
Phosphites are oxidized to phosphate esters:
- P(OR)3 + [O] → OP(OR)3
This reaction underpins the commercial use of some phosphite esters as stabilizers in polymers.[3]
Phosphite esters are used in the Perkow reaction in the formation of vinyl phosphonates and in the Michaelis–Arbuzov reaction to form phosphonates. One other particular use is that of reducing agent. For example, triethylphosphite is known to reduce certain hydroperoxides to alcohols formed by autoxidation[4] (scheme). In this process the phosphite is converted to a phosphate ester.
This reaction type is also utilized in the Wender Taxol total synthesis.
Coordination chemistry
Phosphite esters are lewis basic and hence can form coordination complexes with various metal ions. Representative phosphite ligands include trimethylphosphite ((MeO)3P), triethylphosphite ((EtO)3P), trimethylolpropane phosphite, and triphenylphosphite ((PhO)3P). In contrast to phosphine ligands, phosphites exhibit a smaller ligand cone angles, making them appealing as ligands. They remain somewhat less important that the structurally related phosphine ligand family.[5]
Chemistry of HP(O)(OR)2
Diorganophosphites are derivatives of phosphorus(V) and can be viewed as the di-esters of phosphorous acid. They exhibit tautomerism, however the equilibrium overwhelmingly favours the right-hand (phosphonate-like) form:[6]
- (RO)2POH ⇌ (RO)2P(O)H
The P-H bond is the site of high reactivity in these compounds, whereas in trialkoxyphosphines, the lone pair on phosphorus is the site of high reactivity. The compounds do however undergo transesterification.
See also
- Phosphinite P(OR)R2
- Phosphonite P(OR)2R
- Ortho ester CH(OR)3
- Borate ester B(OR)3
References
- ↑ Malowan, John E. (1953). "Diethyl phosphite". Inorganic Syntheses. 4: 58–60. doi:10.1002/9780470132357.ch19.
- ↑ A. H. Ford-Moore and B. J. Perry (1963). "Triethyl Phosphite". Org. Synth.; Coll. Vol., 4, p. 955
- ↑ Rainer Wolf; Bansi Lal Kaul (2000). "Plastics, Additives". Ullmann's Encyclopedia Of Industrial Chemistry. doi:10.1002/14356007.a20_459.
- ↑ J. N. Gardner, F. E. Carlon and O. Gnoj (1968). "One-step procedure for the preparation of tertiary α-ketols from the corresponding ketones". J. Org. Chem. 33 (8): 3294–3297. doi:10.1021/jo01272a055.
- ↑ Aitor Gual, Cyril Godard, Verónica de la Fuente, Sergio Castillón (2012). "Design and Synthesis of Phosphite Ligands for Homogeneous Catalysis". In Paul C. J. Kamer, Piet W. N. M. van Leeuwen. Phosphorus(III) Ligands in Homogeneous Catalysis: Design and Synthesis. John Wiley & Sons. doi:10.1002/9781118299715.ch3.
- ↑ Doak, G. O.; Freedman, Leon D. (1 February 1961). "The Structure and Properties of the Dialkyl Phosphonates.". Chemical Reviews. 61 (1): 31–44. doi:10.1021/cr60209a002.