Orbital period

The orbital period is the time a given astronomical object takes to complete one orbit around another object, and applies in astronomy usually to planets or asteroids orbiting the Sun, moons orbiting planets, exoplanets orbiting other stars, or binary stars.

For objects in the Solar System, this is often referred to as the sidereal period, determined by a 360° revolution of one celestial body around another, e.g. the Earth orbiting the Sun. The name sidereal is added as it implies that the object returns to the same position relative to the fixed stars projected in the sky. When describing orbits of binary stars, the orbital period is usually referred to as just the period. For example, Jupiter has a sidereal period of 11.86 years while the main binary star Alpha Centauri AB has a period of about 79.91 years.

Another important orbital period definition can refer to the repeated cycles for celestial bodies as observed from the Earth's surface. An example is the so-called synodic period, applying to the elapsed time where planets return to the same kind of phenomena or location. For example, when any planet returns between its consecutive observed conjunctions with or oppositions to the Sun. For example, Jupiter has a synodic period of 398.8 days from Earth; thus, Jupiter's opposition occurs once roughly every 13 months.

Periods in astronomy are conveniently expressed in various units of time, often in hours, days, or years. They can be also defined under different specific astronomical definitions that are mostly caused by small complex eternal gravitational influences by other celestial objects. Such variations also include the true placement of the centre of gravity between two astronomical bodies (barycenter), perturbations by other planets or bodies, orbital resonance, general relativity, etc. Most are investigated by detailed complex astronomical theories using celestial mechanics using precise positional observations of celestial objects via astrometry.

There are many periods related to the orbits of objects, each of which are often used in the various fields of astronomy and astrophysics. Examples of some of the common ones include :

Small body orbiting a central body

The semi-major axis (a) and semi-minor axis (b) of an ellipse

According to Kepler's Third Law, the orbital period T (in seconds) of two bodies orbiting each other in a circular or elliptic orbit is:

where:

For all ellipses with a given semi-major axis the orbital period is the same, regardless of eccentricity.

Inversely, for calculating the distance where a body has to orbit in order to pulse a given orbital period:

where:

For instance, for completing an orbit every 24 hours around a mass of 100 kg, a small body has to orbit at a distance of 1.08 meters from its center of mass.

Orbital period as a function of central body's density

When a very small body is in a circular orbit barely above the surface of a sphere of any radius and mean density ρ (in kg/m3), the above equation simplifies to (since M =  = 4/3πa3ρ)[1]>:

So, for the Earth as the central body (or any other spherically symmetric body with the same mean density, about 5,515 kg/m3)[2] we get:

T = 1.41 hours

and for a body made of water (ρ  1,000 kg/m3)[3]

T = 3.30 hours

Thus, as an alternative for using a very small number like G, the strength of universal gravity can be described using some reference material, like water: the orbital period for an orbit just above the surface of a spherical body of water is 3 hours and 18 minutes. Conversely, this can be used as a kind of "universal" unit of time if we have a unit of mass, a unit of length and a unit of density.

Two bodies orbiting each other

In celestial mechanics, when both orbiting bodies' masses have to be taken into account, the orbital period T can be calculated as follows:[4]

where:

Note that the orbital period is independent of size: for a scale model it would be the same, when densities are the same (see also Orbit#Scaling in gravity).

In a parabolic or hyperbolic trajectory, the motion is not periodic, and the duration of the full trajectory is infinite.

Synodic period

When two bodies orbit a third body in different orbits, and thus different orbital periods, their respective, synodic period is the time between conjunctions. If the orbital periods of the two bodies around the third are called P1 and P2, so that P1 < P2, their synodic period is given by:

Examples of sidereal and synodic periods

Table of synodic periods in the Solar System, relative to Earth:

Object Sidereal period (yr) Synodic period (yr) Synodic period (d)[5]
Mercury       0.240846 (87.9691 days)   0.317   115.88
Venus       0.615 (225 days)   1.599   583.9
Earth       1 (365.25636 solar days)        
Moon       0.0748   (27.32 days)   0.0809   29.5306
99942 Apophis (near-Earth asteroid)       0.886   7.769   2,837.6
Mars       1.881   2.135   779.9
4 Vesta       3.629   1.380   504.0
1 Ceres       4.600   1.278   466.7
10 Hygiea       5.557   1.219   445.4
Jupiter       11.86   1.092   398.9
Saturn       29.46   1.035   378.1
Uranus       84.01   1.012   369.7
Neptune       164.8   1.006   367.5
134340 Pluto       248.1   1.004   366.7
136199 Eris       557   1.002   365.9
90377 Sedna       12050   1.00001   365.1

In the case of a planet's moon, the synodic period usually means the Sun-synodic period, namely, the time it takes the moon to complete its illumination phases, completing the solar phases for an astronomer on the planet's surface. The Earth's motion does not determine this value for other planets because an Earth observer is not orbited by the moons in question. For example, Deimos's synodic period is 1.2648 days, 0.18% longer than Deimos's sidereal period of 1.2624 d.

Binary stars

Binary starOrbital period
AM Canum Venaticorum 17.146 minutes
Beta Lyrae AB 12.9075 days
Alpha Centauri AB 79.91 years
Proxima CentauriAlpha Centauri AB 500,000 years or more

See also

Notes

  1. How do you calculate the density of a sphere?, quora.com
  2. Density of the Earth, wolframalpha.com
  3. Density of water, wolframalpha.com
  4. Bradley W. Carroll, Dale A. Ostlie. An introduction to modern astrophysics. 2nd edition. Pearson 2007.
  5. "Questions and Answers - Sten's Space Blog". www.astronomycafe.net.
Look up synodic in Wiktionary, the free dictionary.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.