Operations support system
Operations support systems (OSS), or operational support systems in British usage, are computer systems used by telecommunications service providers to manage their networks (e.g., telephone networks). They support management functions such as network inventory, service provisioning, network configuration and fault management.
Together with business support systems (BSS), they are used to support various end-to-end telecommunication services. BSS and OSS have their own data and service responsibilities. The two systems together are often abbreviated OSS/BSS, BSS/OSS or simply B/OSS.
The acronym OSS is also used in a singular form to refer to all the Operations Support Systems viewed as a whole system.
Different subdivisions of OSS have been proposed by the TM Forum, industrial research labs or OSS vendors. In general, an OSS covers at least the following five functions:
- Network management systems
- Service delivery
- Service fulfillment, including the network inventory, activation and provisioning
- Service assurance
- Customer care
History
Before about 1980, many OSS activities were performed by manual administrative processes. However, it became obvious that much of this activity could be replaced by computers. In the next five years or so, telephone companies created a number of computer systems (or software applications) which automated much of this activity. This was one of the driving factors for the development of the Unix operating system and the C programming language. The Bell System purchased their own product line of PDP-11 computers from Digital Equipment Corporation for a variety of OSS applications. OSS systems used in the Bell System include AMATPS, CSOBS, EADAS, Remote Memory Administration System (RMAS), Switching Control Center System (SCCS), Service Evaluation System (SES), Trunks Integrated Record Keeping System (TIRKS), and many more. OSS systems from this era are described in the Bell System Technical Journal, Bell Labs Record, and Telcordia Technologies (now part of Ericsson) SR-2275.
Many OSS systems were initially not linked to each other and often required manual intervention. For example, consider the case where a customer wants to order a new telephone service. The ordering system would take the customer's details and details of their order, but would not be able to configure the telephone exchange directly--this would be done by a switch management system. Details of the new service would need to be transferred from the order handling system to the switch management system, and this would normally be done by a technician re-keying the details from one screen into another, a process often referred to as "swivel chair integration". This was another source of inefficiency, so the focus for the next few years was on creating automated interfaces between the OSS applications.
Architecture
A lot of the work on OSS has been centered on defining its architecture. Put simply, there are four key elements of OSS:
- Processes
- the sequence of events
- Data
- the information that is acted upon
- Applications
- the components that implement processes to manage data
- Technology
- how we implement the applications
During the 1990s, new OSS architecture definitions were done by the ITU Telecommunication Standardization Sector (ITU-T) in its Telecommunications Management Network (TMN) model. This established a 4-layer model of TMN applicable within an OSS:
- Business Management Level (BML)
- Service Management Level (SML)
- Network Management Level (NML)
- Element Management Level (EML)
A fifth level is mentioned at times being the elements themselves, though the standards speak of only four levels. This was a basis for later work. Network management was further defined by the ISO using the FCAPS model - Fault, Configuration, Accounting, Performance and Security. This basis was adopted by the ITU-T TMN standards as the Functional model for the technology base of the TMN standards M.3000 - M.3599 series. Although the FCAPS model was originally conceived and is applicable for an IT enterprise network, it was adopted for use in the public networks run by telecommunication service providers adhering to ITU-T TMN standards.
A big issue of network and service management is the ability to manage and control the network elements of the access and core networks. Historically, many efforts have been spent in standardization fora (ITU-T, 3GPP) in order to define standard protocol for network management, but with no success or practical results. On the other hand, IETF SNMP protocol (Simple Network Management Protocol) has become the de facto standard for Internet and telco management, at the EML-NML communication level.
From 2000 and beyond, with the growth of the new broadband and VoIP services, the management of home networks is also entering the scope of OSS and network management. DSL Forum TR-069 specification has defined the CPE WAN Management Protocol (CWMP), suitable for managing home networks devices and terminals at the EML-NML interface.
See also
- Business support system
- COSMOS (Telecommunications)
- Hardware Information Navigational Tool
- Loop Maintenance Operations System
- OA&M
- Service Evaluation System
- Switching Control Center System
References
External links
- Video: What is OSS/BSS?
- TeleManagement Forum
- OSS through Java initiative
- OSS News Review
- OSS Observer landing page of Analysys Mason
- Pipeline Magazine
- InsideTelephony OSS/BSS
- Billing & OSS World
- OSS Line
- Telecommunications OSS and BSS
- What is OSS?