Oh Uhtaek
Uhtaek Oh | |
---|---|
오우택 교수 | |
Born |
June 29, 1955 Republic of Korea |
Residence | Korea |
Nationality | Korea |
Fields | Department of Physiology |
Institutions | Professor, College of Pharmacy, Seoul National University |
Alma mater | College of Pharmacy, Seoul National University |
Doctoral advisor | Robert D. Foreman |
Uhtaek Oh is a Korean physiologist. He is also a professor at College of Pharmacy, Seoul National University. His research is largely known for Cardiac Pain and other Visceral Pain Mechanism and as well as cloning.
Education
1978 Seoul National University, College of Pharmacy, B. S.
1982 Seoul National University, College of Pharmacy, M. S.
1987 University of Oklahoma, School of Medicine, Department of Physiology, Ph. D.
Work
- 1987 - 1988 : Postdoctoral Training, Marine Biomedical Institute, University of Texas, Medical Branch at Galveston
- 1988 : Assistant, Associate, Professor, College of Pharmacy, SNU
- 1994 - 1995 : Visiting Professor, Department of Physiology, Rosalind Franklin University HSC/Chicago Medical School
- 1997 : Director, Sensory Research Center, Creative Research Initiatives, SNU
- 1998 – 2003 : Associate Editor, Neuroscience Letters, Elsevier
- 1999 – 2000 : Editor-in-chief, Archives of Pharmacal Research
- 2000 – 2000 : Secretary General, Korean Society for Brain and Neural Science
- 2004 – 2004 : Secretary General, Korean Society for Biochemistry and Molecular Biology
- 2004 – 2004 : Secretary General, Federation of Asian Pain Societies
- 2004 : Member of the Korean Academy of Science and Technology
- 2005 – 2007 : Secretary General, Organizing Committee, 19th FAOBMB Seoul Conference
- 2007 - 2013 : Treasurer, FAOBMB
- 2008 – 2013 : Chairman, WCU Dept of Molecular Medicine & Biopharmaceutical Sciences
- 2011 - 2013 : National R&D Review Board of the MEST, Board Member
- 2011 - 2013 : Biomedical Technology Development Steering Committee of MEST, Chair
- 2013 : Chairman of the Board, Institut Pasteur-Korea
Major Research Activities
- 2012 : Cho H et al., The Calcium-activated Chloride Channel Anoctamin 1 acts as a Heat Sensor in Nociceptive Neurons. Nature Neuroscience (2012)[1]
- 2008 : Yang YD et al., TMEM16A Confers Receptor Activated Calcium-dependent Chloride Conductance. Nature (2008)[2]
- 2002 : Shin J et al., Bradykinin-12-lipoxygenase-VR1 signaling pathway for inflammatory hyperalgesia. Proc Natl Acad Sci USA (2002)[3]
- 2002 : Cho H et al., Mechano-sensitive Ion Channels in Cultured Sensory Neurons of Neonatal Rats. J Neurosci (2002)[4]
- 2000 : Hwang SW et al., Direct activation of capsaicin receptors by products of lipoxygenases: Endogenous capsaicin-like substances. Proc Natl Acad Sci USA[5]
- 1996 : Oh U et al., Capsaicin Activates a Non-selective Cation Channel in Cultured Neonatal Rat Dorsal-root Ganglion Neurons. J Neurosci[6]
Awards
- 2006 : National Academy of Science Award (Korea)
- 2010 : Korea Science Award (Presidential Award)
- 2010 : Best Scientist and Engineer Award of Korea (Presidential Award)
References
- ↑ Oh, Utaek; Cho H; et al. (2012). "The Calcium-activated Chloride Channel Anoctamin 1 acts as a Heat Sensor in Nociceptive Neurons". Nature Neuroscience. 15 (7): 1015–21. PMID 22634729. doi:10.1038/nn.3111.
- ↑ Oh, Utaek; Yang YD; et al. (2008). "TMEM16A Confers Receptor Activated Calcium-dependent Chloride Conductance". Nature. 455 (7217): 1210–5. Bibcode:2008Natur.455.1210Y. PMID 18724360. doi:10.1038/nature07313.
- ↑ Oh, Utaek; Shin J; et al. (2002). "Bradykinin-12-lipoxygenase-VR1 signaling pathway for inflammatory hyperalgesia". Proc. Natl. Acad. Sci. USA. 99 (15): 10150–5. Bibcode:2002PNAS...9910150S. PMC 126639 . PMID 12097645. doi:10.1073/pnas.152002699.
- ↑ Oh, Utaek; Cho H; et al. (2002). "Mechano-sensitive Ion Channels in Cultured Sensory Neurons of Neonatal Rats". J Neurosci.
- ↑ Oh, Utaek; Hwang SW; Kwak, J.; Lee, S.-Y.; Kang, C.-J.; Jung, J.; Cho, S.; Min, K. H.; Suh, Y.-G.; Kim, D.; Oh, U. (2000). "Direct activation of capsaicin receptors by products of lipoxygenases: Endogenous capsaicin-like substances". Proc. Natl. Acad. Sci. USA. 97 (11): 6155–60. Bibcode:2000PNAS...97.6155H. PMC 18574 . PMID 10823958. doi:10.1073/pnas.97.11.6155.
- ↑ Oh, Utaek; Oh U (1996). "Capsaicin Activates a Non-selective Cation Channel in Cultured Neonatal Rat Dorsal-root Ganglion Neurons". J Neurosci.
This article is issued from
Wikipedia.
The text is licensed under Creative Commons - Attribution - Sharealike.
Additional terms may apply for the media files.