Octagram

Regular octagram

A regular octagram
Type Regular star polygon
Edges and vertices 8
Schläfli symbol {8/3}
t{4/3}
Coxeter diagram
Symmetry group Dihedral (D8)
Internal angle (degrees) 45°
Dual polygon self
Properties star, cyclic, equilateral, isogonal, isotoxal

In geometry, an octagram is an eight-angled star polygon.

The name octagram combine a Greek numeral prefix, octa-, with the Greek suffix -gram. The -gram suffix derives from γραμμή (grammḗ) meaning "line".[1]

Detail

In general, an octagram is any self-intersecting octagon (8-sided polygon).

The regular octagram is labeled by the Schläfli symbol {8/3}, which means an 8-sided star, connected by every third point.

Variations

These variations have a lower dihedral, Dih4, symmetry:


Narrow

Wide
(45 degree rotation)


Isotoxal

An old Flag of Chile contained this octagonal star geometry with edges removed.

The geometry can be adjusted so 3 edges cross at a single point, like the Auseklis symbol

An 8-point compass rose can be seen as an octagonal star, with 4 primary points, and 4 secondary points.

The symbol Rub el Hizb is a Unicode glyph ۞  at U+06DE.

As a quasitruncated square

Deeper truncations of the square can produce isogonal (vertex-transitive) intermediate star polygon forms with equal spaced vertices and two edge lengths. A truncated square is an octagon, t{4}={8}. A quasitruncated square, inverted as {4/3}, is an octagram, t{4/3}={8/3}.[2]

The uniform star polyhedron stellated truncated hexahedron, t'{4,3}=t{4/3,3} has octagram faces constructed from the cube in this way.

Isogonal truncations of square and cube
Regular Quasiregular Isogonal Quasiregular

{4}

t{4}={8}

t'{4}=t{4/3}={8/3}
Regular Uniform Isogonal Uniform

{4,3}

t{4,3}

t'{4,3}=t{4/3,3}

Star polygon compounds

There are two regular octagrammic star figures (compounds) of the form {8/k}, the first constructed as two squares {8/2}=2{4}, and second as four degenerate digons, {8/4}=4{2}. There are other isogonal and isotoxal compounds including rectangular and rhombic forms.

Regular Isogonal Isotoxal

a{8}={8/2}=2{4}

{8/4}=4{2}

Other presentations of an octagonal star

An octagonal star can be seen as a concave hexadecagon, with internal intersecting geometry erased. It can also be dissected by radial lines.

2{4}
{8/3}

Other uses

See also

Usage
Stars generally

References

  1. γραμμή, Henry George Liddell, Robert Scott, A Greek-English Lexicon, on Perseus
  2. The Lighter Side of Mathematics: Proceedings of the Eugène Strens Memorial Conference on Recreational Mathematics and its History, (1994), Metamorphoses of polygons, Branko Grünbaum


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.