Isotopes of nihonium
| |||||||||||||||||||||||||||||||||||||||||||||||||
Nihonium (113Nh) is a synthetic element. Being synthetic, a standard atomic weight cannot be given and like all artificial elements, it has no stable isotopes. The first isotope to be synthesized was 284Nh as a decay product of 288Mc in 2003. The first isotope to be directly synthesized was 278Nh in 2004. There are 6 known radioisotopes from 278Nh to 286Nh, along with the unconfirmed 290Nh. The longest-lived isotope is 286Nh with a half-life of 19.6 seconds.
List of isotopes
nuclide symbol |
Z(p) | N(n) | isotopic mass (u) |
half-life | decay mode(s) |
daughter isotope(s) |
nuclear spin |
---|---|---|---|---|---|---|---|
278Nh | 113 | 165 | 278.17058(20)# | 340 µs | α | 274Rg | |
282Nh | 113 | 169 | 282.17567(39)# | 73 ms | α | 278Rg | |
283Nh[n 1] | 113 | 170 | 283.17657(52)# | 100(+490−45) ms | α | 279Rg | |
284Nh[n 2] | 113 | 171 | 284.17873(62)# | 0.48(+58−17) s | α (96.8%) | 280Rg | |
EC (3.2%)[2][n 3] | 284Cn | ||||||
285Nh[n 4] | 113 | 172 | 285.17973(89)# | 5.5 s[3] | α | 281Rg | |
286Nh[n 5] | 113 | 173 | 286.18221(72)# | 19.6 s[3] | α | 282Rg | |
290Nh[n 6] | 113 | 177 | 2 s? | α | 286Rg |
- ↑ Not directly synthesized, occurs as decay product of 287Mc
- ↑ Not directly synthesized, occurs as decay product of 288Mc
- ↑ Heaviest nuclide known to undergo electron capture
- ↑ Not directly synthesized, occurs in decay chain of 293Ts
- ↑ Not directly synthesized, occurs in decay chain of 294Ts
- ↑ Not directly synthesized, occurs in decay chain of 290Fl and 294Lv; unconfirmed
Notes
- Values marked # are not purely derived from experimental data, but at least partly from systematic trends. Spins with weak assignment arguments are enclosed in parentheses.
- Uncertainties are given in concise form in parentheses after the corresponding last digits. Uncertainty values denote one standard deviation, except isotopic composition and standard atomic mass from IUPAC, which use expanded uncertainties.
Isotopes and nuclear properties
Nucleosynthesis
Super-heavy elements such as nihonium are produced by bombarding lighter elements in particle accelerators that induce fusion reactions. Whereas most of the isotopes of nihonium can be synthesized directly this way, some heavier ones have only been observed as decay products of elements with higher atomic numbers.[4]
Depending on the energies involved, the former are separated into "hot" and "cold". In hot fusion reactions, very light, high-energy projectiles are accelerated toward very heavy targets (actinides), giving rise to compound nuclei at high excitation energy (~40–50 MeV) that may either fission or evaporate several (3 to 5) neutrons.[5] In cold fusion reactions, the produced fused nuclei have a relatively low excitation energy (~10–20 MeV), which decreases the probability that these products will undergo fission reactions. As the fused nuclei cool to the ground state, they require emission of only one or two neutrons, and thus, allows for the generation of more neutron-rich products.[4] The latter is a distinct concept from that of where nuclear fusion claimed to be achieved at room temperature conditions (see cold fusion).[6]
Cold fusion
Before the successful synthesis of nihonium by the RIKEN team, scientists at the Institute for Heavy Ion Research (Gesellschaft für Schwerionenforschung) in Darmstadt, Germany also tried to synthesize nihonium by bombarding bismuth-209 with zinc-70 in 1998. No nihonium atoms were identified in two separate runs of the reaction.[7] They repeated the experiment in 2003 again without success.[7] In late 2003, the emerging team at RIKEN using their efficient apparatus GARIS attempted the reaction and reached a limit of 140 fb. In December 2003 – August 2004, they resorted to "brute force" and carried out the reaction for a period of eight months. They were able to detect a single atom of 278Nh.[8] They repeated the reaction in several runs in 2005 and were able to synthesize a second atom.[9]
Hot fusion
In June 2006, the Dubna-Livermore team synthesised nihonium directly by bombarding a neptunium-237 target with accelerated calcium-48 nuclei:
Two atoms of 282Nh were detected.[10]
As decay product
Evaporation residue | Observed nihonium isotope |
---|---|
294Lv, 290Fl ? | 290Nh ? |
294Ts, 290Mc | 286Nh[3] |
293Ts, 289Mc | 285Nh[3] |
288Mc | 284Nh[11] |
287Mc | 283Nh[11] |
Nihonium has been observed as a decay product of flerovium (via electron capture) and moscovium (via alpha decay). Moscovium currently has four known isotopes; all of them undergo alpha decays to become nihonium nuclei, with mass numbers between 283 and 286. Parent flerovium and moscovium nuclei can be themselves decay products of livermorium and tennessine respectively. To date, no other elements have been known to decay to nihonium.[12] For example, in January 2010, the Dubna team (JINR) identified nihonium-286 as a product in the decay of tennessine via an alpha decay sequence:[3]
Theoretical calculations
Evaporation residue cross sections
The below table contains various targets-projectile combinations for which calculations have provided estimates for cross section yields from various neutron evaporation channels. The channel with the highest expected yield is given.
DNS = Di-nuclear system; σ = cross section
Target | Projectile | CN | Channel (product) | σmax | Model | Ref |
---|---|---|---|---|---|---|
209Bi | 70Zn | 279Nh | 1n (278Nh) | 30 fb | DNS | [13] |
237Np | 48Ca | 285Nh | 3n (282Nh) | 0.4 pb | DNS | [14] |
References
- ↑ Hofmann, S.; Heinz, S.; Mann, R.; Maurer, J.; Münzenberg, G.; Antalic, S.; Barth, W.; Burkhard, H. G.; Dahl, L.; Eberhardt, K.; Grzywacz, R.; Hamilton, J. H.; Henderson, R. A.; Kenneally, J. M.; Kindler, B.; Kojouharov, I.; Lang, R.; Lommel, B.; Miernik, K.; Miller, D.; Moody, K. J.; Morita, K.; Nishio, K.; Popeko, A. G.; Roberto, J. B.; Runke, J.; Rykaczewski, K. P.; Saro, S.; Scheidenberger, C.; Schött, H. J.; Shaughnessy, D. A.; Stoyer, M. A.; Thörle-Popiesch, P.; Tinschert, K.; Trautmann, N.; Uusitalo, J.; Yeremin, A. V. (2016). "Review of even element super-heavy nuclei and search for element 120". The European Physics Journal A. 2016 (52). doi:10.1140/epja/i2016-16180-4.
- ↑ http://xxx.lanl.gov/pdf/1502.03030.pdf
- 1 2 3 4 5 Oganessian, Yu. Ts.; Abdullin, F. Sh.; Bailey, P. D.; Benker, D. E.; Bennett, M. E.; Dmitriev, S. N.; Ezold, J. G.; Hamilton, J. H.; et al. (2010). "Synthesis of a New Element with Atomic Number Z=117". Physical Review Letters. 104 (14): 142502. Bibcode:2010PhRvL.104n2502O. PMID 20481935. doi:10.1103/PhysRevLett.104.142502.
- 1 2 Armbruster, Peter & Münzenberg, Gottfried (1989). "Creating superheavy elements". Scientific American. 34: 36–42.
- ↑ Barber, Robert C.; Gäggeler, Heinz W.; Karol, Paul J.; Nakahara, Hiromichi; Vardaci, Emanuele; Vogt, Erich (2009). "Discovery of the element with atomic number 112 (IUPAC Technical Report)". Pure and Applied Chemistry. 81 (7): 1331. doi:10.1351/PAC-REP-08-03-05.
- ↑ Fleischmann, Martin; Pons, Stanley (1989). "Electrochemically induced nuclear fusion of deuterium". Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. Elsevier. 261 (2): 301–308. doi:10.1016/0022-0728(89)80006-3. Retrieved 15 October 2012.
- 1 2 "Search for element 113", Hofmann et al., GSI report 2003. Retrieved on 3 March 2008
- ↑ Morita, Kosuke; Morimoto, Kouji; Kaji, Daiya; Akiyama, Takahiro; Goto, Sin-Ichi; Haba, Hiromitsu; Ideguchi, Eiji; Kanungo, Rituparna; et al. (2004). "Experiment on the Synthesis of Element 113 in the Reaction 209Bi(70Zn, n)278113". Journal of the Physical Society of Japan. 73 (10): 2593–2596. Bibcode:2004JPSJ...73.2593M. doi:10.1143/JPSJ.73.2593.
- ↑ Barber, Robert C.; Karol, Paul J; Nakahara, Hiromichi; Vardaci, Emanuele; Vogt, Erich W. (2011). "Discovery of the elements with atomic numbers greater than or equal to 113 (IUPAC Technical Report)". Pure and Applied Chemistry. 83 (7): 1485. doi:10.1351/PAC-REP-10-05-01.
- ↑ Oganessian, Yu. Ts.; Utyonkov, V.; Lobanov, Yu.; Abdullin, F.; Polyakov, A.; Sagaidak, R.; Shirokovsky, I.; Tsyganov, Yu.; Voinov, A.; Gulbekian, Gulbekian; et al. (2007). "Synthesis of the isotope 282113 in the 237Np+48Ca fusion reaction" (PDF). Physical Review C. 76: 011601(R). Bibcode:2007PhRvC..76a1601O. doi:10.1103/PhysRevC.76.011601.
- 1 2 Oganessian, Yu. Ts.; Penionzhkevich, Yu. E.; Cherepanov, E. A. (2007). "AIP Conference Proceedings". 912: 235. doi:10.1063/1.2746600.
|chapter=
ignored (help) - ↑ Sonzogni, Alejandro. "Interactive Chart of Nuclides". National Nuclear Data Center: Brookhaven National Laboratory. Retrieved 2008-06-06.
- ↑ Feng, Zhao-Qing; Jin, Gen-Ming; Li, Jun-Qing; Scheid, Werner (2007). "Formation of superheavy nuclei in cold fusion reactions". Physical Review C. 76 (4): 044606. Bibcode:2007PhRvC..76d4606F. arXiv:0707.2588 . doi:10.1103/PhysRevC.76.044606.
- ↑ Feng, Z; Jin, G; Li, J; Scheid, W (2009). "Production of heavy and superheavy nuclei in massive fusion reactions". Nuclear Physics A. 816: 33–51. Bibcode:2009NuPhA.816...33F. arXiv:0803.1117 . doi:10.1016/j.nuclphysa.2008.11.003.
- Isotope masses from:
- M. Wang; G. Audi; A. H. Wapstra; F. G. Kondev; M. MacCormick; X. Xu; et al. (2012). "The AME2012 atomic mass evaluation (II). Tables, graphs and references." (PDF). Chinese Physics C. 36 (12): 1603–2014. Bibcode:2012ChPhC..36....3M. doi:10.1088/1674-1137/36/12/003.
- G. Audi; A. H. Wapstra; C. Thibault; J. Blachot; O. Bersillon (2003). "The NUBASE evaluation of nuclear and decay properties" (PDF). Nuclear Physics A. 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001. Archived from the original (PDF) on 2008-09-23.
- Isotopic compositions and standard atomic masses from:
- J. R. de Laeter; J. K. Böhlke; P. De Bièvre; H. Hidaka; H. S. Peiser; K. J. R. Rosman; P. D. P. Taylor (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
- M. E. Wieser (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051. Lay summary.
- Half-life, spin, and isomer data selected from the following sources. See editing notes on this article's talk page.
- G. Audi; A. H. Wapstra; C. Thibault; J. Blachot; O. Bersillon (2003). "The NUBASE evaluation of nuclear and decay properties" (PDF). Nuclear Physics A. 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001. Archived from the original (PDF) on 2008-09-23.
- National Nuclear Data Center. "NuDat 2.1 database". Brookhaven National Laboratory. Retrieved September 2005. Check date values in:
|access-date=
(help) - N. E. Holden (2004). "Table of the Isotopes". In D. R. Lide. CRC Handbook of Chemistry and Physics (85th ed.). CRC Press. Section 11. ISBN 978-0-8493-0485-9.
Isotopes of copernicium | Isotopes of nihonium | Isotopes of flerovium |
Table of nuclides |