Nickel compounds

Compounds of nickel are chemical compounds containing the element nickel which is a member of the group 10 of the periodic table. Most compounds in the group have an oxidation state of +2. Nickel is classified as a transition metal with nickel(II) having much chemical behaviour in common with iron(II) and cobalt(II). Many salts of nickel(II) are isomorphous with salts of magnesium due to the ionic radii of the cations being almost the same. Nickel forms many coordination complexes. Nickel tetracarbonyl was the first pure metal carbonyl produced, and is unusual in its volatility. Metalloproteins containing nickel are found in biological systems.

Nickel forms simple binary compounds with non metals including halogens, chalcogenides, and pnictides. Nickel ions can act as a cation in salts with many acids, including common oxoacids Salts of the hexaaqua ion (Ni•6H2O2+) are especially well known. Many double salts containing nickel with another cation are known. There are organic acid salts. Nickel can be part of a negatively charged ion (anion) making what is called a nickellate. Numerous quaternary compounds (with four elements) of nickel have been studied for super conductivity properties, as nickel is adjacent to copper and iron in the periodic table can can form compounds with the same structure as the high-temperature superconductors that are known.

Colour

Most of the common salts of nickel are green due to the presence of hexaaquanickel(II) ion, Ni(H2O)2+.

Geometry

Nickel atoms can connect to surrounding atoms or ligands in a variety of ways. Six coordinated nickel is the most common and is octahedral, but this can be distorted if ligands are not equivalent. For four coordinate nickel arrangements can be square planar, or tetrahedral. Five coordinated nickel is rarer.

Magnetism

Some nickel compounds are ferromagnetic at sufficiently low temperatures. In order to show magnetic properties the nickel atoms have to be close enough together in the solid structure.

Binary compounds

A binary compound of nickel contains one other element. Substances that contain only nickel atoms are not actually compounds.

In a noble gas matrix, nickel can form dimers, a molecule with two nickel atoms: Ni2.[1] Ni2 has a bonding energy of 2.07±0.01 eV. For Ni2+ the bond energy is around 3.3 eV. Nickel dimers and other clusters can also be formed in a gas and plasma phase by shooting a powerful laser at a nickel rod in cold helium gas.[2]

oxides

Nickel oxides include Nickel(II) oxide and Nickel(III) oxide.

Hydroxides

Nickel hydroxides are used in nickel–cadmium and Nickel–metal hydride batteries. Nickel(II) hydroxide Ni(OH)2, the main hydroxide of nickel is coloured apple green. It is known as the mineral theophrastite. β-NiO(OH) is a black powder with nickel in the +3 oxidation state. It can be made by oxidising nickel nitrate in a cold alkaline solution with bromine. A mixed oxidation state hydroxide Ni3O2(OH)4 is made if oxidation happens in a hot alkaline solution. A Ni4+ hydroxide: nickel peroxide hydrate NiO2•H2O, can be made by oxidising with alkaline peroxide. It is black, and unstable and oxidises water.

Halides

nickel chloride hexahydrate

Nickel(II) fluoride NiF2 is yellow, crystallising in the rutile structure and can form a trihydrate, NiF2·3H2O.[3] A tetrahydrate also exists.[4]

Nickel chloride NiCl2 is yellow, crystallising in the cadmium chloride structure. It can form a hexahydrate, NiCl2·6H2O, a tetrahydrate NiCl2·4H2O over 29 °C and a dihydrate, NiCl2·2H2O over 64 °C.[3]

nickel bromide NiBr2 is yellow, also crystallising in the cadmium chloride structure. It can form a hexahydrate, NiBr2·6H2O.[3] Crystallisation above 29° forms a trihydrate NiBr2·3H2O, and a dihydrate NiBr2·2H2O.[5] Enneahydrate, NiBr2·9H2O can crstallise from water below 2 °C.[3] Nickelous hexammine bromide Ni(NH3)6Br2is violet or blue. It is soluble in boiling aqueous ammonia, but is insoluble in cold.[3] Diammine, monoammine, and dihydrazine nickel bromides also exist.[3]

With four bromide atoms nickel(II) forms a series of salts called tetrabromonickelates.

Nickel iodide NiI2 is black, also crystallising in the cadmium chloride structure. It can form a green hexahydrate, NiI2·6H2O.[3] Nickel iodide has a brown diammine NiI2•2NH3 and a bluish-violet hexammine NiI2•6NH3.[3]

Nickel(III) fluoride NiF3

Nickel(IV) fluoride NiF4

Chalcogenides

needles of Halls Gap Millerite

By reacting nickel with chalcogens, nickel sulfide, nickel selenide, and nickel telluride are formed. There are numerous sulfides: Ni1.5S, Ni17S18, Ni3S2 (heazlewoodite), Ni3S4 (polydymite), Ni9S8 (godlevskite), NiS (millerite) and two other NiS forms, NiS2 (vaesite) in pyrite structure. Black nickel tetrasulfide NiS4 is formed from ammonium polysulfide and nickel in water solution. Mixed and double sulfides of nickel also exist. Nickel with selenium forms several compounds Ni1−xSe 0≤x≤0.15, Ni2Se3, NiSe2 also known as a mineral penroseite.

Nickel forms two different polonides by heating nickel and polonium together: NiPo and NiPo2.[6]

Pnictides

The nickel arsenide nickeline

Non-stoichiometric compounds of nickel with phosphorus, arsenic and antimony exist, and some are found in nature. One interstitial nitride has formula Ni3N (hexagonal P6322, Z = 2, a = 4.6224 Å and c = 4.3059 Å).[7] In a solid nitrogen matrix, nickel atoms combine with nitrogen molecules to yield Ni(N2)4.[1]

Nickel phosphide Ni2P has density 7.33 and melts at 1100 °C.[4]

The mineral chloanthite has formula NiAs2, nickeline has formula NiAs and breithauptite has formula NiSb. NiAs melts at 967° and has density 7.77. NiSb melts at 1174°. It has the highest density of a nickel compound at 8.74 g/cm3.[4]

NiAsS gersdorffite, and NiSbS ullmannite, NiAsSe Jolliffeite are pnictide/chalcogenide compounds that occur as minerals.

Other

Nickel also forms carbides and borides. Nickel boride can take the forms Ni2B (a green/black solid), NiB, Ni3B, o-Ni4B3 and m-Ni4B3.[8] Nickel hydride NiH is only stable under high pressures of hydrogen.

Diatomic molecules

Hot nickel vapour reacting with other atoms in the gas phase can produce molecules consisting of two atoms. Nickel monofluoride can be observed by its emission spectrum in the gas phase.[9]

Nickel subchloride NiCl is formed in gaseous form when nickel chloride is vapourised, and is the most common in the gas phase above 1450 K. It is formed when nickel is exposed to hot, low pressure chlorine.[10]

Nickel monobromide, NiBr can exist in the gas phase when an electric discharge goes through NiBr2 gas.[9][11][12]

Nickelmonoiodide can exist in the gas phase.[9]

Formula wt distance energy refs
pm kcal/mol
NiH
NiF
NiCl
NiBr
NiI
Ni2 46 [2]
NiAu 58 [13]

Alloys

Compounds of nickel with other metals can be called alloys. The substances with fixed composition include nickel aluminide (NiAl) melting at 1638° with hexagonal structure.[4] NiY, NiY3, Ni3Y, Ni4Y, NiGd3,[14]

BaNi2Ge2 changes structure from orthorhombic to tetragonal around 480 °C.[15] THis is a ternary intermetallic compound. Others include BaNiSn3 and the superconductors SrNi2Ge2, SrNi2P2, SrNi2As2, BaNi2P2, BaNi2As2.[15]

Simple salts

Oxo acid salts

bright green crystals in two clusters on a white and grey rock
Mint green Annabergite, a nickel arsenite

Nickel(II) sulfate can crystallise with six water molecules yielding Retgersite or with seven making Morenosite which is isomorphic to Epsom salts. These contain the hexaquanickel(II) ion.[16] There is also an anhydrous form, a dihydrate and a tetrahydrate, the last two crystallised from sulfuric acid. The hexahydrate has two forms, a blue tetragonal form, and a green monoclinic form, with a transition temperature around 53 °C.[17] The heptahydrate crystallises from water below 31.5 above this blue hexhydrate forms, and above 53.3 the green form.[18] Heating nickel sulfate dehydrates it, and then 700° it loses sulfur trioxide, sulfur dioxide and oxygen.

Nickel sulfite can be formed by bubbling sulfur dioxide through nickel carbonate suspended in water. A solution is formed that slowly loses sulfur dioxide, and which crystallises nickel sulfite hexahydrate. Crystals are frequently in the shape of stars, caused by the two opposite triangular enantiomorphs growing base to base. nickel sulfite hexahydrate is highly piezoelectric. Optically it is uniaxial negative with refractive indexes ω=1.552 ε=1.509.[19] When heated it dehydrates and then ends up making nickel oxide and nickel sulfate.[20]

Nickel thiosulfate NiS2O3 has the same structure as the magnesium salt. It has alternating layers of octahedral shaped nickel2+ hexahydrate, and tetrahedral shaped S2O32− perpendicular to the β direction.[21] When heated to 90 °C it decomposes to form NiS. NiS2O3 can be made from BaS2O3 and NiSO4.[22] Nickel sulfamate can be used for nickel or mixed nickel-tungsten plating.[23] It can be formed by the action of sulfamic acid on nickel carbonate.[24]

Nickel selenite NiSeO3 has many different hydrates, anhydrous NiSeO313H2O, NiSeO3•H2O, NiSeO3•2H2O (which is also a mineral called ahlfeldite), and NiSeO3•4H2O.[25]

Nickel nitrate commonly crystallises with six water molecules,[16] but can also be anhydrous, or with two, four or nine waters.[26] triphenylphosphine oxide nickel nitrate [(C6H6)3PO]2Ni(NO3)2 is non ionic, with nitrato as a ligand. It can be made from nickel perchlorate. It is yellow and melts at 266 °C.[27]

Nickel carbonate NiCO3•6H2O, hellyerite,[28] crystallising with six water molecules, precipitates when an alkali bicarbonate is added to a Ni aqueous solution.[16] Basic nickel carbonate, zaratite, with the formula Ni4CO3(OH)6(H2O)4, is produced when alkali carbonates are added to a nickel solution. Nickel phosphate, Ni3(PO4)2•7H2O is also insoluble.[16] A number of other phosphates have been made, including nanoporous substances resembling zeolites named with "Versailles Santa Barbara" or VSB. The nanoporous nickel phosphates can accommodate sufficiently small molecules and selectively catalyse reactions on them.[29] A nickel arsenate, Ni3(AsO4)2·8H2O occurs as the mineral annabergite.[30]

Nickel perchlorate, Ni(ClO4)2•6H2O,[16] nickel chlorate, Ni(ClO3)2•6H2O[31]nickel chromate (NiCrO4), nickel chromite (NiCr2O4), nickel(II) titanate, nickel bromate Ni(BrO3)2•6H2O[32] nickel iodate (Ni(IO3)2•4H2O), nickel stannate (NiSnO3•2H2O)[4] are some other oxy-salts.

The uranates include NiU2O6,[33] NiUO4 α and β forms (orthorhombic a=6.415 Å; b=6.435 Å; c=6.835 Å),[34] and NiU3O10.[34]

formula name mol struct cell Å ° V Z density colour refs
wt a b c β Å3 g/cm3
NiSO3•6H2O nickel sulfite hexahydrate hexagonal 8.794 9.002 603 2.04 emerald green [19][35]
NiSO3•3H2O nickel sulfite trihydrate light green [36]
NiSO3•3N2H4•H2O nickel sulfite trihydrazine hydrate rose [20]
NiSO3•2N2H4•H2O nickel sulfite dihydrazine hydrate blue [20]
NiS2O3.6H2O Nickel thiosulfate hexahydrate 463.03 orthorhombic 9.282 14.44 6.803 912.1 4 2.03 green [21]
diaqua (4,4´-dimethylbipyridine- N,N´)(methanol) thiosulfato(S) nickel(II) triclinic 8.157 9.685 11.714 α=76.73 β=73.56 γ=78.23 854.2 2 [37]
aqua terpyridine(N,N´,N´´) thiosulfato(S,O) nickel(II) hemihydrate monoclinic,C2/c 27.866 9.274 14.216 114.24˚ 3350. 8 [37]
bis(dipyridylamine) thiosulfato(S,O) nickel(II) hemihydrate orthorhombic, Iba2 12.986 16.821 19.479 4254.9 8 [37]
NiS2O3(2,9-dimethyl-1,10-phenanthroline)(H2O)·H2O·CH3OH monoclinic, C2/c 26.269 7.641 18.381 97.00 3662 8 [38]
NiS2O3(2,9-dimethyl-1,10-phenanthroline) monoclinic, P21/n 11.108 10.955 11.666 103.32˚ 1381.4 4 [38]
Ni(NH2SO3)2•4H2O Nickel sulfamate tetrahydrate 322.95 triclinic P1 6.33 6.73 6.78 α= 88.9 β=67.87 γ=67.76 245.27 1 2.19 green [24]
Ni(SO3F)2 nickel fluorosulfate yellow [39]
NiSeO3 anhydrous nickel selenite 742.68 C2/c 15.4915 9.9355 14.8416 111.173 2130.15 32 4.630 yellow brown [25]
NiSeO3 anhydrous nickel selenite 742.68 Orthorhombic 5.8803 7.5235 4.9394 218.52 yellow green high pressure [40]
NiSeO3•1/3H2O alpha nickel selenite one third hydrate triclinic P1 8.1383 8.4034 8.5724 α=123.713 β=90.174 γ=111.823 435.83 2 1.429 citron yellow [25]
NiSeO3•1/3H2O beta nickel selenite one third hydrate triclinic P1 8.0222 8.2133 8.4364 α=68.654 β=61.782 γ=66.363 438.11 2 1.422 citron yellow [25]
NiSeO3•2H2O nickel selenite dihydrate monoclinic 6.3782 8.7734 7.5467 81.451 417.61 4 3.524 yellow brown [25]
NiSeO3•4H2O nickel selenite tetrahydrate light green [25]
NiSe2O5 anhydrous nickel pyroselenite Pnab Orthorhombic 60754 10.3662 6.7913 427.71 4 4.605 light yellow [25]
Ni12F2(SeO3)8(OH)6 nickel hydroxo fluoro selenite Dumortierite structure hexagonal P63mc 12.702 4.922 1 [41]
Ni12(SeO3)8(OH)8 nickel hydroxy selenite Dumortierite structure hexagonal P63mc 12.7004 4.9201 687.28 1 pale green [41]
NiTeO3 anhydrous nickel tellurite Orthorhombic 5.9564 7.4986 5.2128 232.83 yellow green high pressure [40]
Ni3TeO6 trinickel tellurate Hexagonal 5.103 5.103 13.781 4.272 [42]
NiTe2O5 nickel pyrotellurite Orthorhombic 8.869 8.441 12.126 5.042 [42]
Ni2Te3O8 Monoclinic 12.392 5.207 11.496 98.6 5.702 [42]
Ni6(TeO3)4(OH)4 nickel hydroxy tellurite hexagonal 12.993 4.958 2 light green [43]
Ni5Te4O12Cl2 nickel tellurium oxychloride 1066.585 Monoclinic 19.5674 5.2457 16.3084 125.289 1366.38 4 5.186 orange [44]
Ni5Te4O12Br2 nickel tellurium oxybromide 1155.77 Monoclinic 20.255 5.2498 16.3005 124.937 1421.0 4 5.403 orange [44]
Ni5Te4O12I2 nickel tellurium oxyiodide Monoclinic 20.766 5.230 16.464 125.79 1451.1 4 brown [44]
Ni11(HPO3)8(OH)6 nickel hydroxyphosphite hexagonal 12.6329 4.9040 677.77 1 light green [45]
NiMoO4.xH2O nickel molybdate monoclinic 11.923 8.220 14.007 113.01 1264 [46]
Ni(NO3)2•2H2O nickel nitrate dihydrate triclinic 5.09465 7.10410 8.42881 γ=78.698 β=102.7640 α=83.1985 287.5 [46]
Ni(NO3)2•4H2O nickel nitrate tetrahydrate triclinic 7.5710 6.623 16.26 γ=97.26 β= 90.015 α=82.57 802.3 [46]
NiN2O2 nickel hyponitrite light green [47]
NiP2O6•12H2O nickel hypodiphosphate orthorhombic Pnmm 11.2418 18.5245 7.3188 1523.1 4 2.142 [48]
Ni3(PO4)2 nickel phosphate monoclinic 10.1059 4.6964 5.8273 91.138 276.52 2 4.396 greenish yellow [49]
α-Ni2P2O7 nickel pyrophosphate monoclinic 6.9177 8.275 8.974 113.879 469.7 4 4.12 ∃ α',β and δ forms [50]
NiHPO4 nickel hydrogen orthophosphate beige yellow [51]
[Ni(PO3)2]3•hydrate nickel trimetaphosphate [51]
[Ni(PO3)2]4•hydrate nickel tetrametaphosphate [51]
Ni2P4O12 nickel cyclotetraphosphate monoclinic C12/c1 11.611 8.218 9.826 118.41 824.7 4 green [52]
Ni12H6(PO4)8(OH)6 nickel hydroxy phosphate hexagonal 12.4697 4.9531 1 light green [43]
(H3O+/NH4+)4[Ni18(HPO4)14(OH)3F9]·12H2O Nanoporous nickel phosphate VSB-1 hexagonal 19.834 5.0379 1710 [29]
Ni20[(OH)12(H2O)6][(HPO4)8(PO4)4]•12H2O Nanoporous nickel phosphate VSB-5 hexagonal 18.153 6.387 1827 [29]
Ni3P6O18•17H2O nickel hexametaphosphate triclinic 9.109 9.267 10.75113 α=84.885 β=102.44 γ=101.64 867.4 pale green [53]
Ni3(AsO4)2·8H2O annabergite Monoclinic 10.179 13.309 4.725 105 2 light green [54]
Ni12H6(AsO4)8(OH)6 nickel hydroxy arsenate hexagonal 12.678 5.0259 1 light green [43]
NiAs2O4 Nickel arsenite [55]
Ni3(AsO4)3 o-nickel orthoarsenate 454.01 orthorhombic 5.943 11.263 8.164 546.5 4 5.517 [56]
Ni3(AsO4)3 m-nickel orthoarsenate xanthiosite 453.91 monoclinic 5.764 9.559 10.194 92.95 560.9 4 5.394 golden yellow [56]
Ni8.5As3O16 Aerugite 979.8 trigonal 5.9511 27.567 281.9 1 5.772 dark green [57]
NiSb2O4 Nickel antimonite tetragonal 8.6388 5.9052 413.58 (at 240K) [58]
NiSb2O6 Nickel metaantimonate
nickel antimony oxide
P42/mnm 4.62957 9.1981 2 [59]
Ni(H2O)6[Sb(OH)6]2 bottinoite Nickel hydroxy antimonate P3 16.060 9.792 2187.2 6 pale blue [60]
NiTa2O6 Nickel metatantalate P42/mnm 4.71581 9.1163 2 [59]
NiSn(SO3F)6 nickel tin fluorosulfate light yellow [39]
Ni(SO3CF3)2 nickel trifluoromethanesulfonate [61]
NiSn(SO3CF3)6 nickel tin triflate light yellow [39]
(Ni,Mg)10Ge3O16 871.7 trigonal R3 5.8850 28.6135 286.1 1 5.060 [62]
NiCO3 anhydrous nickel carbonate 118.72 rhombohedral 4.6117 14.735 271.39 6 4.358 [63]
Ni2SiO4 nickel orthosilicate
liebenbergite
nickel silicate olvine
orthorhombic Pbnm 4.727 10.120 5.911 285.0 4 [64]
Ni2GeO4 nickel orthogermanate cubic Fd3m 8.221 8 [65]
Ni(CN)2 anhydrous nickel cyanide tetragonal quad layer 4.8570 12.801 4 [66]
NiB4O7 γ-nickelborateγ P6522 4.256 34.905 547.5 6 [67]

Fluoro acid salts

Nickel tetrafluoroborate, Ni(BF4)2•6H2O is very soluble in water, alcohol and acetonitrile. It is prepared by dissolving nickel carbonate in tetrafluoroboric acid.[68][69] Nickel tetrafluoroberyllate NiBeF4xH2O, can be hydrated with six or seven water molecules.[70] Both nickel hexafluorostannate NiSnF6.6H2O and nickel fluorosilicate NiSiF6.6H2O crystallise in the trigonal system.[71] Nickel hexafluorogermanate NiGeF6 has a rosy-tan colour and a hexagonal crystal with a=5.241 Å unit cell volume is 92.9 Å3. It is formed in the reaction with GeF4 and K2NiF6.[72] Nickel fuorotitanate NiTiF6.6H2O crystallises in hexagonal green crystals. It can be made by dissolving nickel carbonate, and titanium dioxide in hydrofluoric acid. The crystal dimensions are a=9.54, c=9.91 density=2.09 (measure 2.03).[73]

Ni(AsF6)2, Ni(SbF6)2, Ni(BiF6)2 are made by reacting the hexafluoro acid with NiF2 in hydrofluoric acid.[72] They all have hexagonal crystal structure, resembling the similar salts of the other first row transition metals.[72] For Ni(AsF6)2 a=4.98, c=26.59, and V=571, formula weight= Z=3.[72] Ni(SbF6)2 is yellow with a=5.16Å, c = 27.90Å Z=3. The structure resembles LiSbF6, but with every second metal along the c axis missing.[74]

Others include the green fluorohafnate NiHfF6•6H2O, and Ni2HfF8•12H2O,[75] NiZrF6•6H2O [76]

Chloroacid salts

Nickel tetrachloroiodate Ni(ICl4)2 can be made by reacting iodine with nickel chloride. It consists of green needles.[77]

Nitrogen anion salts

Nickel cyanide tetrahydrate Ni(CN)2•4H2O is insoluble in water, but dissolves in aqueous ammonia.[4] It forms double salts with interesting structures.[66]

Nickel azide Ni(N3)2 is a sensitive explosive. It can be made by treating nickel carbonate with hydrazoic acid. Acetone causes the precipitation of the hydrous solid salt, which is green. At 490K it slowly decomposes to nitrogen and nickel metal powder, losing a half of the nitrogen in four hours.[78] Nickel azide is complexed by one azo group when dissolved in water, but in other solvents, the nickel atom can have up to four azo groups attached.[79] Nickel azide forms a dihydrate: Ni(N3)2•2H2O and a basic salt called nickel hydroxy azide Ni(OH)N3.[80]

Nickel amide, Ni(NH2)2 is a deep red compound that contains Ni6 clusters surrounded by 12 NH2 groups.[81] Nickel amide also forms a series of double salts. Other homoleptic nickel amides derived by substituting the hydrogen atoms are Ni[N(C6H5)2]2 (diphenyl) and boryl amides Ni[NBMes2Mes]2 and Ni[NBMes2C6H5]2.[82]

Organic acid salts

Nickel acetate has the formula (CH3COO)2Ni·4H2O. It has monodentate acetate and hydrogen bonding. A dihdrate also exists. Nickel acetate is used to seal anodised aluminium.[83]

Nickel formate Ni(HCOO)2.2H2O decomposes when heated to yield carbon dioxide, carbon monoxide, hydrogen, water and finely divided porous nickel.[84] All the nickel atoms are six coordinated, but half have four water molecules and two formate oxygens close to the atom, and the other half are coordinated by six oxygens of formate groups.[85]

Aspergillus niger is able to dispose of otherwise toxic levels of nickel in its environment by forming nickel oxalate dihydrate crystals.[86] nickel oxalate can also be formed in to various namorods and nanofibres by use of surfacants.[87] When heated nickel oxalate dihydrate dehydrates at 258° and decomposes to NiO over 316 °C.[88] Double oxalate salts where oxalate is a ligand on the nickel atom may be called oxalatonickelates.

Other organic acid salts of nickel include nickel oleate, nickel propionate, nickel butyrate, nickel caprylate, nickel lactate, nickel benzoate, nickel bis(acetyl acetonate), nickel salicylate, nickel alkyl phenyl salicylate. Nickel stearate forms a green solution, however when precipitated with alcohol a gel is produced, that also contains a mixture of basic salts, and free stearic acid.[89]

Nickel malonate, and nickel hydrogen malonate both crystallise with two molecules of water. They decomposes when heated to yield gaseous water, carbon dioxide, carbon monoxide, ethanol, acetic acid, methyl formate and ethyl formate. Nickel acetate exists as an intermediate and the final result is that solid nickel, nickel oxide, Ni3C and carbon remain.[90] With malonate nickel can form a bis-malonato-nickelate anion, which can form double salts.[91] Nickel maleate can be made from maleic acid and nickel carbonate in boiling water. A dihydrate crystallises from the water solution.[92] Nickel fumarate prepared from fumaric acid and nickel carbonate is pale green as a tetrahydrate, and mustard coloured as an anhydride. It decomposes when heated to 300° to 340° in vacuum. Decompostion mostly produces nickel carbide, carbon dioxide, carbon monoxide and methane. But also produced were butanes, benzene, toluene, and organic acid.[93]

Nickel succinate can form metal organic framework compounds.[94]

Nickel citrate complexes are found in leaves of some nickel accumulating plant species in New Caledonia such as Pycnandra acuminata.[95] Citrate complexes include NiHcit, NiHcit23−, Nicit, Nicit24−, and Ni2H2cit24−. (ordered from low to high pH). Also there is Ni4H4cit35−. Nickel citrate is important in nickel plating.[96] When predipitation of nickel citrate is attempted a gel forms. This apparently consists of tangled fibres of [(C6H6O7)Ni]n, which can be reduced to nickel metal fibres less than a micron thick, and meters long.[97] Double nickel citrates exist, including tetraanion citrate when pH is over 9.5.[98] An amorphous nickel iron citrate Ni3Fe6O4(C6H6O7)8·6H2O produces carbon monoxide, carbon dioxide and acetone when heated over 200 °C leaving Trevorite, NiFe2O4 a nickel ferrite.[99] A green crystalline nickel citrate with formula Ni3(C6H5O7)2•10H2O melts at 529K and decomposition starts at 333K.[100]

Nickel glutarate in the form called Mil-77, [Ni20{(C5H6O4)20(H2O)8}]⋅40H2O is pale green. It crystallises in a porous structure containing twenty member rings. The 40 water molecules "occluded" in the porous channels come out when it is heated to 150 °C retaining the crystal framework. At 240 °C the crystal form changes and over 255° the remaining water is lost. Between 330° and 360° the organic components burn and it is destroyed.[101]

Cyclopropane carboxylic acid forms two basic salts with nickel, a hydrate Ni9(OH)2(H2O)6(C4H5O2)8·2H2O with density 1.554 Mg/m3 and an anhydrous form Ni5(OH)2(C4H5O2)8 with density 2.172 mg/m3.[102]

Nickel trifluoroacetate tetrahydrate exists, as well as two emerald green acid trifluoroacetates, a bridged trinuclear form [Ni3(CF3COO)6(CF3COOH)6](CF3COOH) and a hydrated acid form [Ni3(CF3COO)6(CF3COOH)2(H2O)4](CF3COOH)2 both with triclinic crystal form. The first has density 2.205 and the second 2.124. They are made by dissolving the nickel trifluoroacetate tetrahydrate in trifluoroacetic acid either anhydrous or 1% hydrated.[103]

Nickel naphthenate is used as a fuel additive to suppress smoke,[104] as a rubber catalyst and as an oil additive.

When Nickel benzoate is heated in a vacuum, carbon dioxide, carbon monoxide, benzene, benzoic acid, phenol, biphenyl, nickel, nickel oxide, and nickel carbide are formed.[105] It can crystallise as anhydrous, a trihydrate or a tetrahydrate.[106]

Nickel terephthalate can be made by a double decomposition of sodium terephtalate and nickel nitrate. Nickel terephthalate precipitates. Its solubility is 0.38 g/100g water at 25 °C. In ammonium hydroxide a violet solution forms. Boiling acetic acid converts the nickel to nickel acetate. The terephtalate converts to a basic salt when boiled in water. Understating this compound is important when reducing coloured contaminants in polymers made from terephthalate.[107]

formula name mol struct cell Å ° V Z density colour refs
wt a b c β Å3 g/cm3
Ni(HCOO)2.2H2O Nickel formate hydrate monoclinic 8.60 7.06 9.21 96°50′ 4 [85]
[Ni20{(C5H6O4)20(H2O)8}]⋅40 H2O Nickel glutarate cubic 16.581 4559 pale green [101]
Ni9(OH)2(H2O)6(C4H5O2)8·2H2O nickel cyclopropane carboxylate hydrate orthorhombic 14.810 24.246 24.607 8836 4 1.554 bright green [102]
Ni5(OH)2(C4H5O2)8 nickel cyclopropane carboxylate orthorhombic 19.406 18.466 21.579 90 7733 8 2.172 pale green [102]
[Ni3(CF3COO)6(CF3COOH)6](CF3COOH) Nickel acid trifluoroacetate trigonal 13.307 53.13 8148 6 2.205 emerald green [103]
[Ni3(CF3COO)6(CF3COOH)2(H2O)4](CF3COOH)2 Nickel acid trifluoroacetate hydrate triclinic 9.12 10.379 12.109 α=84.59° β=72.20° γ=82.80° 1080.9 1 2.124 emerald green [103]
K2[Ni(C6H5O7)(H2O)2]2·4H2O potassium nickel citrate triclinic 6.729 9.100 10.594 α=94.86 β=100.76 γ=103.70 613.5 1 1.942 green [108]
K2[Ni2(C6H5O7)2(H2O)4]·4H2O Dipotassium tetraaquabis(μ-citrato-k4O:O',O'',O''')nickelate(II) tetrahydrate 717.94 monoclinic 10.616 13.006 9.0513 93.09 1247.8 2 1.911 green [109]
N(CH3)4[Ni4(C6H4O7)3(OH)(H2O)]·18H2O tetramethyl ammonium nickel basic citrate triclinic 11.84 14.29 20.93 96.16 β=106.36 γ=94.89 3352 1 bright green extremely weak [108][110]
Na2[Ni(C6H4O7)]•2H2O disodium nickel citrate green dec 371 [98]
(NH4)2[Ni(HCit)•2H2O]2•2H2O Dimeric ammonium diaquocitratonickelate (II) dihydrate 639.79 triclinic 6.407 9.471 9.6904 α=105.064 β=91.99 γ=89.33 567.5 1 1.872 green [111]
(NH4)4[Ni(HCit)2]•2H2O tetrammonium dicitratonickelate (11) dihydrate 545.10 monoclinic 9.361 13.496 9.424 115.476 1074.9 2 1.684 [111]
Na2[Ni(HCit)•2H2O]2•2H2O Dimeric sodium diaquocitratonickelate (II) dihydrate [111]
K2[Ni(HCit)•2H2O]2•2H2O Dimeric potassium diaquocitratonickelate (II) dihydrate [111]
(NH4)2[Ni(H2O)6][Ti(H2cit)3]2·6H2O 1547.43 hexagonal 15.562 7.690 1605.5 1 1.600 light green [112]
[Ni(C5H7O2)2]3 Nickel(II) acetylacetonate 256.91 orthorhombic 23.23 9.64 15.65 3505 4 1.46 dark green [113]
Ni[C4O4]•2H2O nickel squarate ?cubic 8.068 8.068 8.068 90° 525 1.93 green [114]
Ni[C4O4]•8H2O nickel squarate octahydrate 428.93 monoclinic 10.288 6.372 12.852 106.98 805.8 2 1.768 green [115]
Ni[C5O5]•3H2O Nickel croconate trihydrate orthorhombic green [116]
K2[Ni(C5O5)2(H2O)2]•4H2O Poly[[di-μ2-aqua-di-μ5-croconato(2-)-nickel(II)dipotassium(I)] tetrahydrate] 525.11 monoclinic 8.015 6.660 16.489 90.20 880.1 2 1.982 green [117]
Ni(C5H5COO)2•2H2O nickel dibenzoate tetrahydrate 354.98 monoclinic 6.1341 34.180 6.9793 95.331 1457.0 4 1.618 light green [106]
Ni(C5H5COOCOOH)2•6H2O nickel dihydrogen diphthalate hexahydrate monoclinic 16.024 5.574 12.500 113.42 2 1.611 [118]
Ni[C6H4(COO)2]•4H2O Nickel terephthalate green [107]
Ni(OH)[C6H4(COO)(COOH)]•H2O basic nickel terephthalate green [107]

Double salts

Nickel is one of the metals that can form Tutton's salts. The singly charged ion can be any of the full range of potassium, rubidium, cesium, ammonium (NH4), or thallium.[119] As a mineral the ammonium nickel salt, (NH4)2Ni(SO4)2·6 H2O, can be called nickelboussingaultite.[120] With sodium, the double sulfate is nickelblödite Na2Ni(SO4)2·4 H2O from the blödite family. Nickel can be substituted by other divalent metals of similar sized to make mixtures that crystallise in the same form.[121]

Nickel forms double salts with Tutton's salt structure with tetrafluoroberyllate with the range of cations of ammonia,[122] potassium, rubidium, cesium,[123] and thallium.[124]

Anhydrous salts of the formula M2Ni2(SO4)3, which can be termed metal nickel triusulfates, belong to the family of langbeinites. The known salts include (NH4)2Ni2(SO4)3, K2Ni2(SO4)3 and Rb2Ni2(SO4)3, and those of Tl and Cs are predicted to exist.

Some minerals are double salts, for example Nickelzippeite Ni2(UO2)6(SO4)3(OH)10 · 16H2O which is isomorphic to cobaltzippeite, magnesiozippeite and zinczippeite, part of the zippeite group.[125]

Double hydrides of nickel exist, such as Mg2NiH4.[126]

formula name mol struct cell Å ° V Z density colour refs
wt a b c β Å3 g/cm3
Li2[NiF(PO4)] Lithium nickel fluorophosphate 186.56 orthorhombic 10.473 6.289 10.846 714.3 8 3.469 [127]
Na2[NiF(PO4)] sodium nickel fluorophosphate Pbcn 90 823.4 [128]
Na2Ni(SO4)2•4H2O nickelblödite monoclinic 11.045 8.193 5.535 100.50 2.487 green [129]
K2Ni2(SO4)3 potassium nickel trisulfate 483.77 orthorhombic 9.8436 9.8436 9.8436 90 3.369 [130]
Rb2Ni2(SO4)3 rubidium nickel trisulfate 576.51 9.9217 9.9217 9.9217 90 3.921 [131]
(NH4)2Ni2(SO4)3 ammonium nickel trisulfate 441.65 orthorhombic 9.904 9.904 9.904 90 3.02 [132]
(NH4)4Ni3(SO4)5 ammonium nickel pentasulfate yellow [133]
NiLa(SeO3)2Cl nickel lanthanum diselenite chloride hexagonal 8.666 18.662 1194.2 6 (153K) [134]
NiNd10(SeO3)12Cl8 nickel Neodymium diselenite chloride monoclinic 15.8175 1578,68 19.276 114.202 7407 4 (153K) [135]
Ni6Fe3+2(SO4)(OH)16•4(H2O) honessite 904.08 trigonal 3.083 26.71 219.86 0.25 1.71 green [136]
NiTi(SO4)3 nickel titanium sulfate monoclinic 8.254 8.54 14.1444 124.967 817 4 3.21 [137]
Na2Ni(SeO4)2•2H2O sodium nickel selenate dihydrate triclinic 5.507 5.905 7.172 α = 108.56 °, β = 99.07 °, γ = 106.35 ° 204.2 1 [138]
K2Ni(SeO4)2•2H2O potassium nickel selenate dihydrate [139]
K2Ni(SeO4)2•6H2O potassium nickel selenate Tuttons salt 527.52 monoclinic a b c 104.45 4 2.559 bright green [140]
Rb2Ni(SeO4)2•6H2O rubidium nickel selenate Tuttons salt 619.62 monoclinic a b c 105.20 4 2.856 bright green [140]
Cs2Ni(SeO4)2•6H2O caesium nickel selenate Tuttons salt 713.62 monoclinic 9.426 12.961 6.473 106.17 759.5 2 3.114 bright emerald green [140][141]
(NH4)2Ni(SeO4)2•6H2O ammonium nickel selenate Tuttons salt 485.68 monoclinic a b c 106.29 4 2.243 bright green [140]
Tl2Ni(SeO4)2•6H2O thallium nickel selenate Tuttons salt monoclinic a b c 105.60 4 3.993 bright green [142]
K2NiP2O7 310.85 monoclinic P21 9.230 17.540 8.32 91.44 1346.3 8 3.067 [143]
K6Sr2Ni5(P2O7)5 786.55 monoclinic P21/c 11.038 9.53 7.438 100.13 1578 2 3.309 yellow [143]
NaNi2(SO4)2[(H2O)(OH)] monoclinic C2/m Natrochalcite-type 8.605 6.185 7.336 114.78 354.5 2 [144]
BaNi2(PO4)2 barium nickel phosphate Trigonal R-3 4.8112 4.8112 23.302 467.1 3 green [145]
BaNi2(AsO4)2 barium nickel arsenate Trigonal R-3 4.945 4.945 23.61 532.59 3 5.31 [145]
BaNi2(VO4)2 barium nickel vanadate Trigonal R-3 5.0375 5.0375 22.33 3 [146]
Na4Ni7(AsO4)6 tetrasodium heptanickel hexaarsenate 1336.3 monoclinic C2/m 14.538 14.505 10.6120 118.299 1970.3 4 brown [147]
K2Ni(CO3)2•H2O potassium nickel carbonate
Potassium tetraaquadicarbonatonickelate
monoclinic Baylissite-type 6.755 6.156 12.2406 113.265 467.6 2 2.34 [148]
Rb2Ni(CO3)2•H2O Rubidium nickel carbonate monoclinic Baylissite-type 6.971 6.348 12.2807 114.289 495.34 2 2.83 [149]
NiTh(NO3)6•8H2O nickel thorium nitrate Monoclinic P21/c 9.089 8.728 13.565 96.65 1068.8(2) [150]
K[NiGa2(PO4)3(H2O)2] Potassium nickel(II) gallium phosphate hydrate 558.17 Monoclinic C2/c 13.209 10.173 8.813 107.68 1128.4 Z = 4 [151]
KNi3(PO4)P2O7 Potassium trinickel(II) orthophosphate diphosphate 484.14 Monoclinic 9.8591 9.3953 9.9778 118.965 808.63 4 [152]
KNiPO4 potassium nickel phosphate [153]
KNiPO4•6H2O potassium nickel phosphate hexahydrate monoclinic P21 6.8309 11.0610 6.1165 91.045 462.07 2 [154]
NiK4(P3O9)2•7H2O nickel potassium tricyclophosphate hydrate orthorhombic Fm2m 23.03 11.882 8.732 4 blue [155]
NiK4(P3O9)2 nickel potassium tricyclophosphate triclinic P-1 6.143 6.80 12.80 α=102.8 β=89.7 γ=66.03 473.56 1 [155]
NaK5Ni5(P2O7)4 Sodium pentapotassium pentanickel tetra(diphosphate) 1207.80 triclinic 7.188 9.282 10.026(5) α=109.31 β=90.02 γ=104.07 610.0 1 [156]
NH4NiPO4.H2O ammonium nickel phosphate hydrate orthorhombic 5.566 8.760 4.742 231.2 [157]
NH4NiPO4.6H2O ammonium nickel phosphate hydrate
Ni-struvite
Orthorhombic Pmn21 6.924 6.104 11.166 471.5 2 [158][159][160]
LiNiPO4 lithium nickel phosphate orthorhombic 10.032 5.855 4.681 274.9 4 brown [161]
NaNiPO4 sodium nickel phosphate Pnma maricite structure 8.7839 6.7426 5.0368 298.31 4 yellow [162]
NaNiPO4 sodium nickel phosphate Pnma triphylite form 4.98 6.13 9.98 304.23 [163]
Na4Ni7(PO4)6 Cm 10.550 13.985 6.398 104.87 912.4 2 3.906 [162][164]
NaNiPO4•7H2O sodium nickel phosphate heptahydrate tetrahedral P42/mmc 6.7390 10.9690 498.15 2 [154]
Na3NiP3O10•12H20 trisodium nickel triphosphate dodecahydrate monoclinic (pseudoorthorhombic) 15.0236 9.1972 14.6654. 90.0492 2014.46 1.967 light green [165]
Na2Ni3(OH)2(PO4)2 sodium nickel hydroxide phosphate monoclinic 14.259 5.695 4.933 104.28 2 3.816 [166]
NiNa4(P3O9)2•6H2O nickel tetrasodium cyclotriphosphate hexahydrate triclinic 6.157 6.820 10.918 α=80.21 β=97.8 γ=119.5 409.8 1 [167]
NiRb4(P3O9)2 nickel tetrarubidium cyclotriphosphate P-31c 7.288 7.288 20.343 2 [168]
NiCs4(P3O9)2•6H2O nickel tetracaesium cyclotriphosphate hydrate orthorhombic 19.992 6.500 18.445 4 [155]
NiCs4(PO3)6 nickel tetracaesium cyclotriphosphate rhombohedral P-31c 11.602 11.602 9.078 1058.24 2 [155]
NiAg4(P3O9)2•6H2O nickel tetrasilver cyclotriphosphate hexahydrate triclinic 9.209 8.053 6.841 α=89.15 β=102.94 γ=97.24 1 [169]
NiAg4(P3O9)2 nickel tetrasilver cyclotriphosphate triclinic 6.100 6.783 10.764 α = 78.66 β=96.85 γ=113.36 401 1 [169]
Ni(NH4)4(P3O9)2•4H2O nickel tetraammonium cyclotriphosphate tetrahydrate monoclinic 2 [170]
TlNi4(PO4)3 Thallium nickel triphosphate orthorhombic Cmc21 4 pale yellow [171]
Tl4Ni6(PO4)6 Thallium nickel hexaphosphate monoclinic Cm 4 yellow brown [171]
Tl2Ni4P2O7(PO4)2 monoclinic C2/c 8 brown [171]
NiMnSb Nickel manganese antimonide cubic 5.945 210.1 4 7.57 [172]
NiMnSi Nickel manganese silicide Orthorhombic 5.8967 3.6124 6.9162 147.32 4 [173][174]
NiMnGe orthorhombic Pnma 6.053 3.769 7.090 161.75 2 [175]
NiFeGe hexagonal [175]
TiNiSi orthorhombic [175]
NaNiIO6 sodium nickel periodate orthorhombic 8.599 2.492 10.281 220.3 [176]
KNiIO6 potassium nickel periodate orthorhombic 12.09 3.683 6.062 269.9 [176]
KNiIO6 potassium nickel periodate triclinic 6.4203 5.075 4.223 α= 65.07 β= 92.717 γ=109.95 116.51 [176]

Double fluorides include the above-mentioned fluoroanion salts, and those fluoronickelates such as NiF4 and NiF6. Other odd ones include an apple green coloured KNiF3·H2O and NaNiF3·H2O, aluminium nickel pentafluoride AlNiF5·7H2O, ceric nickelous decafluoride Ce2NiF10·7H2O, niobium nickel fluoride Ni3H4Nb2F20·19H2O, vanadium nickel pentafluoride VNiF5·7H2O, vanadyl nickel tetrafluoride VONiF4·7H2O, chromic nickelous pentafluoride CrNiF5·7H2O, molybdenum nickel dioxytetrafluoride NiMoO2F4·6H2O, tungsten nickel dioxytetrafluoride NiWO2F4·6H2O and NiWO2F4·10H2O, manganic nickel pentafluoride MnNiF4·7H2O, nickelous ferric fluoride FeNiF5·7H2O.[177]

Nickel trichloride double salts exist which are polymers. Nickel is in octahedral coordination, with double halogen bridges. Examples of this include RbNiCl3, pinkish tan coloured H2NN(CH3)3NiCl3.[178] Other double trichlorides include potassium nickel trichloride KNiCl3·5H2O,[179] yellow cesium nickel trichloride CsNiCl3,[179] lithium nickel trichloride LiNiCl3·3H2O,[179] hyrdrazinium nickel tetrachloride,[179] and nickel ammonium chloride hexahydrate NH4NiCl3·6H2O.[4]

The tetrachloronickelates contain a tetrahedral NiCl42− and are dark blue. Some salts of organic bases are ionic liquids at standard conditions.[180] tetramethylammonium nickel trichloride is pink and very insoluble.[181] Other tetrachlorides include rubidium nickel tetrachloride, lithium nickel tetrachloride Li2NiCl4·4H2O stable from 23 to 60°, stannous nickel tetrachloride SnCl2·NiCl2.6H2O, stannic nickel hexachloride SnCl4·NiCl2.6H2O is tetragonal.[182]

Lithium nickel hexachloride Li4NiCl6·10H2O is stable from 0 to 23°.

Copper nickel dioxychloride 2CuO·NiCl2·6H2O, and copper nickel trioxychloride 3CuO·NiCl2·4H2O.[179]

Cadmium dinickel hexachloride, CdCl2·2NiCl2.12H2O crystallises in hexagonal system, dicadmium dinickel hexachloride, 2CdCl2·NiCl2.12H2O has rhombic crystals, and is pleochroic varying from light to dark green.[182]

Thallic nickel octochloride 2TlCl3·NiCl2.8H2O is bright green.[182]

Double bromides include the tetrabromonickelates, and also caesium nickel tribromide, CsNiBr3 copper nickel trioxybromide, 3Cu0·NiBr2·4H20 mercuric nickel bromide, Hg2NiBr6, HgNiBr4. Aqueous nickel bromide reacting with mercuric oxide yields mercuric nickel oxybromide, 6NiO.NiBr2.HgBr2.20H2O didymium nickel bromide, 2(Pr,Nd)Br3.3NiBr2.18H2O is reddish brown (mixture of praseodymium and neodymium) Lanthanum nickel bromide, 2LaBr3.3NiBr2.18H2O nickel stannic bromide (or nickel bromostannate) NiSnBr6·8H2O is apple green.[183][184]

The tetraiodonickelates are blood red coloured salts of the NiI4 ion with large cations. Double iodides known include mercuric nickel hexaiodide 2HgI2•NiI2•6H2O, mercuric nickel tetraiodide HgI2•NiI2•6H2O, and lead nickel hexaiodide I2•2NiI2•3H2O.[3]

The diperiodatonickelates of nickel IV are strong oxidisers, and akali monoperiodatonickelates also are known.

Nonamolybdonickelate(IV), [NiMo9O32]6− can oxidise aromatic hydrocarbons to alcohols.[185]

Nickel forms double nitrates with the lighter rare earth elements. The solid crystals have the formula Ni3Me2(NO3)12.24H2O. The metals include La Ce Pr Nd Sm Gd and the non rare earth Bi. Nickel can also be replaced by similar divalent ions, Mg, Mn Co Zn. For the nickel salts melting temperatures range from 110.5° for La, 108.5° for Ce, 108° for Pr, 105.6° for Nd, 92.2° for Sm and down to 72.5° for Gd The Bi salt melting at 69°. Crystal structure is hexagonal with Z=3.[186] Ni3La2(NO3)12.24H2O becomes ferromagnetic below 0.393 K.[187] These double nickel nitrates have been used to separate the rare earth elements by fractional crystallization.[188]

Nickel thorium nitrate has formula NiTh(NO3)6•8H2O. Nickel atoms can be substituted by other ions with radius 0.69 to 0.83 Å. The nitrates are coordinated on the thorium atom and the water to the nickel. Enthalp of solution of the octahydrate is 7 kJ/mol. Enthalpy of formation is -4360 kJ/mol. At 109° the octahydrate becomes NiTh(NO3)6.6H2O, and at 190° NiTh(NO3)6.3H2O and anhydrous at 215°.[150] The hexahydrate has Pa3 cubic structure.[150]

Various double amides containing nickel clusters have been made using liquid ammonia as a solvent. Substances made include red Li3Ni4(NH2)11·NH3 (Pna21; Z = 4; a = 16.344(3) Å; b = 12.310(2) Å; c = 8.113(2) Å v=1631 D=1.942), and Cs2Ni(NH2)4•NH3 (P21/c; Z = 4; a =9.553(3) Å; b = 8.734(3) Å; c = 14.243(3) Å; β = 129.96(3)° V=910 D=2.960). These are called amidonickel compounds.[189] Yet others include Li4Ni4(NH2)12·NH3, Na2Ni(NH2)4,[190] orange red Na2Ni(NH2)4•2NH3,[191] Na2Ni(NH2)4•NH3, K2Ni(NH2)4•0.23KNH2, and Rb2Ni(NH2)4•0.23RbNH2.[189]

Nickel dihydrogen phosphide (Ni(PH2)2) can form orange, green or black double salts KNi(PH2)3) that crystallise from liquid ammonia. They are unstable above -78 °C, giving off ammonia, phosphine and hydrogen.[192]

Ternary chalcogenides

formula name colour structure production references
NH4NiS5 ammonium nickel sulphide black NH4 polysulfide+NiSO4 [193][194]
K2Ni3S4 potassium nickel tetrasulfide bronze yellow Fddd a=10.023 b=26.074 c=5.704 NiSO4 K2CO3 S [193][195][196]
K2Ni11S10 potassium nickel decasulfide dark metallic green NiO+KCNS [193] J. Milbauer
Na2Ni3S4 sodium nickel tetrasulfide dark yellow NiSO4 Na2CO3 S [193] R. Schneider
KNi2S2 potassium dinickel disulfide orange yellow Ni foil, S, K at 723K [15][197]
K2Ni3Se4 potassium nickel tetraselenide gold Fddd a=10.468 b=26.496 c=5.995 [198][199]
KNi2Se2 potassium dinickel diselenide purple-red I4/mmmtetragonal a=3.909, c=13.4142 Ni foil, Se shot, K at 723K [15][200]
CsNi2Se2 caesium dinickel diselenide tetragonal a=3.988, c=14.419 heat elements [201]
TlNi2Se2 Thallium dinickel diselenide gold metallic tetragonal heat elements together in closed quartz tube [202]
Rb2Ni3S4 rubidium nickel tetrasulphide metallic greenish gold Fmmm orthorhombic a=9.901 Å, b=13.606 Å and c=5.861 Z=4 layered; ferromagnetic only after water immersion [198][203]
Rb2Ni3Se4 rubidium nickel tetraselenide golden metallic Fddd orthorhombic a = 10.555 Å, b = 27.588 Å, c = 6.031 Å, Z = 8 layered; ferromagnetic only after water immersion Rb2CO3 S Ni [204]
Cs2Ni3S4 cesium nickel tetrasulphide greenish gold Fmmm a=10.038 b=14.552 c=5.934 [199][204]
Cs2Ni3S4 cesium nickel tetrasulphide gold Fmmm a=10.540 b=14.624 c=6.194 [199]
BaNi4S5 Barium nickel pentasulfide bronze yellow NiSO4 K2CO3 S [193] R. Schneider; I. and L. Bellucci
Pb2Ni3S2 lead nickel disulfide melt 790° PbS Ni [205] W Guertler; W Guertler H Schack
(Ni,Fe)9S8 Pentlandite bronze yellow melt 870 [205] T. Scheerer
Fe2Ni2S4 ferrous nickel tetrasulfide melt 840 [206] K Bornemann
Fe2Ni2S3 ferrous nickel trisulfide stable over 575°, melt 886, [207] K Bornemann
Fe3Ni4S5 ferrous nickel pentasulfide below 575 [207] K Bornemann
Fe4Ni2S5 [207] K Bornemann
Fe2Ni3S4 [207] K Bornemann
Fe3Ni4S5 [207] K Bornemann
Fe2Ni2S3 [207] K Bornemann
FeNi2S4 Violarite dark violet grey mineral oxidate
Ni3Sn2S2 [208]
Ni3Bi2S2 superconducting [208]
Ni3Bi2Se2 superconducting [208]
NiSnS3 nickel thiostannate greenish black orthorhombic a=6.88 b=7.89 c=11.95 Z=8 V=644 NiCl2 + SnS2 [209]
NiGeS33 nickelselenogermanate [210]
Ta2NiS5 Orthorhombic [211]
Ta2NiSe5 monoclinic β=90.53 [211]
Ta2Ni2Te4 [212]
Ta2Ni3Te5 [212]

Acid salts

Nickel hydrofluoride, H5NiF7·6H2O is made by using excess hydrofluoric acid solution on nickel carbonate. It is deep green.[3]

Basic salts

Nickel oxyfluoride Ni4F4O(OH)2 is green.[3]

Nickelous enneaoxydiiodide 9NiO•Nil2•15H2O forms when solutions of nickel iodide are exposed to air and evaporated.[3]

Complexes

Simple complexes of nickel include hexaquonickel(ii), yellow tetracyanonickelate [Ni(CN)4]2−, red pentacyanonickelate [Ni(CN)5]3− only found in solution, [Ni(SCN)4]2− and [Ni(SCN)6]4−. Halo- complexes include [NiCl4]2−, [NiF4]2−, [NiF6]4−, [NiCl2(H2O)4] [Ni(NH3)4(H2O)2]2+, [Ni(NH3)6]2+, [Ni(en)3)]2+.[16] Some complexes have fivefold coordination. N[CH2CH2NMe2]3 (tris(N,N-dimethyl-2-aminoethyl)amine); P(o-C6H4SMe)3; P(CH2CH2CH2AsMe2)3.[16]

Other ligands for octahedral coordination include PPh3, PPh2Me and thiourea.[16]

Nickel tetrahedral complexes are often bright blue and 20 times or more intensely coloured than the octahedral complexes.[16] The ligands can include selections of neutral amines, arsines, arsine oxides, phosphines or phosphine oxides and halogens.[16]

Bio molecules

Cofactor F430 contains nickel in a tetrapyrrole derivative, and is used in the production of methane. Some hydrogenase enzymes contain a nickel-iron cluster as an active site in which the nickel atom is held in place by cysteine or selenocysteine.[213] Plant ureases contain a bis-μ-hydroxo dimeric nickel cluster.[214] CO-methylating acetyl-CoA synthase contains two active nickel atoms, one is held in a square planar coordination by two cysteine and two amide groups, and the other nickel is held by three sulfur atoms. It is used to catalyse the reduction of carbon monoxide to acetyl-CoA.[215]

Nickel superoxide dismutase (or Ni-SOD) from Streptomyces contains six nickel atoms. The nickel holding is done by a "nickel binding hook" which as the amino acid pattern H2N-His-Cys-X-X-Pro-Cys-Gly-X-Tyr-rest of protein, where the bold bits are ligands for the nickel atom.[216]

Nickel transporter proteins exist to move nickel atoms in the cell. in E. coli these are termed NikA, NikB, NikC, NikD, NikE. In order to come through a cell membrane an nickel permease protein is used. In Alcaligenes eutrophus the gene for this is hoxN.[217]

Organometallics

Well known nickel organometalic (or organonickel) compounds include Nickelocene, bis(cyclooctadiene)nickel(0) and nickel tetracarbonyl. Nickel<name=Jolly/>[218]

Nickel tetracarbonyl was the first discovered organonickel compound. It was discovered that carbon monoxide corroded a nickel reaction chamber valve. And then that the gas coloured a bunsen burner flame green, and then that a nickel mirror condensed from heating the gas. The Mond process was thus inspired to purify nickel.[219] The Nickel tetracarbonyl molecule is tetrahedral, with a bond length for nickel to carbon of 1.82 Å.[219] Nickel tetracarbonyl easily starts breaking apart over 36° forming Ni(CO)3, Ni(CO)2, and Ni.[219] Ni(CO) and NiC appear in mass spectroscopy of nickel carbonyl.[219]

There are several nickel carbonyl cluster anions formed by reduction from nickel carbonyl. These are [Ni2(CO)5]2−, dark red [Ni3(CO)8]2−, [Ni4(CO)9]2−, [Ni5(CO)9]2−, [Ni6(CO)12]2−. Salts such as Cd[Ni4(CO)9] and Li2[Ni3(CO)8]•5acetone can be crystallised.[220]

Mixed cluster carbonyl anions like [Cr2Ni3(CO)16]2−, [Mo2Ni3(CO)16]2− and [W2Ni3(CO)16]2− [Mo<Ni4(CO)14]2− can form salts with bulky cations like tetraethylammonium. The brown [NiCo3(CO)11] changes to red [Ni2Co4(CO)14]2−.[221]

With oxygen or air the explosive Ni(CO)3O2 can be formed from nickel carbonyl.[222]

Yet other ligands can substitute for carbon monoxide in nickel carbonyl. These lewis base ligands include triphenylphosphine, triphenoxyphosphine, trimethoxyphosphine, tributylphosphine, triethoxyphosphine, triethylisonitrolphosphine, triphenylarsine, and triphenylstibine.

Nickel forms dark blue planar complexes with l,2-Diimino-3,5-cyclohexadiene or bisacetylbisaniline [(C6H5N-C(CH3)=)2]2Ni. Another planar bis compound of nickel is formed with phenylazothioformamide C6H5N=NC(S)NR2, and dithizone C6H5N=NC(S)NHNHC6H5.[223] tetrasulfur tetranitride when reduced with nickel carbonyl makes Ni[N2S2H]2 also coloured dark violet.[223]

Alkoxy compounds

Nickel tert-butoxide Ni[OC(CH3)3]2 is coloured violet. It is formed in the reaction of di-tert-butylperoxide with nickel carbonyl.[219]

Nickel dimethoxide is coloured green.[224] There are also nickel chloride methoxides with formulae: NiClOMe, Ni3Cl2(OMe)4 and Ni3Cl(OMe)5 in which Nickel and oxygen appear to have a cubane structure.[225]

Other alkoxy compounds known for nickel include nickel dipropoxide, nickel di-isopropoxide, nickel tert-amyloxide, and nickel di-tert-hexanoxide.[226] These can be formed by crystallising nickel chloride from the corresponding alcohol, which forms an adduct. This is then heated with a base.[227] Nickel(II) alkoxy compounds are polymeric and non-volatile.[228]

Ziegler catalysis uses nickel as a catalyst. In addition it uses diethylaluminum ethoxide, phenylacetylene and triethylaluminium It converts ethylene into 1-butene. It can dimerise propylene. The catalyst, when combined with optically active phosphines, can produce optically active dimers. An intermediate formed is tris(ethylene)nickel.(CH2=CH2)3Ni in which the ethylene molecules connect to the nickel atom side on.[229]

Homoletptic bimetallic alkoxides have two different metals, and the same alkoxy group. They include Ni[(μ-OMe)3AlOMe]2, Ni[Al(OBut)4]2 (nickel tetra-tert-butoxyaluminate) and Ni[Al(OPri)4]2. (nickel tetra-isopropoxyaluminate a pink liquid)[230] Potassium hexaisoproxynoibate and tantalate can react with nickel clhoride to make Ni[Nb(OPri)6]2 and Ni[Ta(OPri)6]2. Ni[Zr2(OPri)9]2 The bimetallic alkoxides are volatile and can dissolve in organic solvents.[231] A trimetallic one exists [Zr2(OPri)9]Ni[Al(OPri)4].[232] NiGe(OBut)8], NiSn(OBut)8] and NiPb(OBut)8] are tricyclic. [Ni2μ3-OEt)2(μ-OEt)8Sb4(OEt)6]

Heteroleptic bitmetallic ethoxides have more than one variety of alkoxy group, e.g. Ni[(μ-OPri)(μ-OBut)Al(OBut)2]2 which is a purple solid.

Oxoalkoxides contain extra oxygen in addition to the alcohol. With only nickel, none are known, but with antimony an octanuclear molecule exists [Ni5Sb3(μ4-O)2(μ3-OEt)3(-OEt)9(OEt)3(EtOH)4].[233]

Aryloxy compounds

There are many nickel compounds with the formula template Ni(OAr)XL2 and Ni(OAr)2L2. L is a ligand with phosphorus or nitrogen atoms. OAr is a phenol group or O- attached to an aromatic ring. Often an extra molecule of the phenol is hydrogen bonded to the oxygen attached to nickel.[234]

μ-bonded molecules

Others include cyclododecatriene nickel,

Sulfur rings

Nickel bis-dithiobenzoate can form a violet coloured sodium salt.[219]

Two bisperfluoromethyl-l,2-dithietene molecules react with nickel carbonyl to make a double ring compound with nickel linked to four sulfur atoms. This contains four trifluoromethyl groups and is dark purple. Instead of this methyl or phenyl can substitute. These can be made by substituted acetylenes with sulfur on nickel carbonyl, or on nickel sulfide. Bis-diphenyldithiene nickel has a planar structure[235]

Nickel chalcogen cluster compound

A hexameric compound [Ni(SR)2]6 is produced in the reaction of nickel carbonyl with dialkyl sulfides (RSR).[235]

Nickel can be part of a cubane-type cluster with iron and chalcogens. The metal atoms are arranged in a tetrahedron shape, with the sulfur or selenium making up another tetrahedron that combines to make a cube. For example, the [NiFe3S4(PPh3)(SEt)3]2− is a dianion that has a tetraethyl ammonium salt. Similar ion clusters are [NiFe3Se4(PPh3)(SEt)3]2− and [NiFe3Se4(SEt)4]3−.[236] In the natural world cube shaped metal sulfur clusters can have sulfur atoms that are part of cysteine.

[Ni4Se23]4− has a cube with Ni(IV)4Se4 at its core, and then the nickel atoms are bridge across the cube faces by five Se3 chains and one Se4 chain. It is formed as a tetraethylammonium salt, from Li2Se, Se, NEt4Cl and nickel dixanthate in dimethylformamide as a solvent. This reaction also produces (NEt4)2Ni(Se4)2.[237]

Nitrosyl compounds

When liquid nickel carbonyl is dissolved in liquid hydrogen chloride, it can react with nitrosyl chloride to form a dimer Ni(NOCl)2. This then decomposes to Ni(NO)Cl2, which is polymeric.[219]

Nickel carbonyl reacting with nitric oxide yields blue coloured mononitrosyl nickel NiNO. With cyclohexane as well, pale blue Ni(NO2)NO is produced with nitrous oxide as a side product. With cyclopentadiene as well, π-C5H5NiNO is produced.[219]

References

  1. 1 2 Barrett, Paul H.; Montano, P. A. (1977). "Proposed iron–nitrogen molecule produced in a solid nitrogen matrix". Journal of the Chemical Society, Faraday Transactions 2. 73 (3): 378–383. doi:10.1039/F29777300378.
  2. 1 2 Lian, Li; Su, C.-X.; Armentrout, P.B. (May 1991). "The bond energy of Ni+2". Chemical Physics Letters. 180 (3): 168–172. doi:10.1016/0009-2614(91)87135-X.
  3. 1 2 3 4 5 6 7 8 9 10 11 12 Mellor, J. W. (May 1936). "Nickel". A COMPREHENSIVE TREATISE ON INORGANIC AND THEORETICAL CHEMISTRY VOLUME XV Ni Ru, Rh Pd, Os, Ir. Retrieved 31 May 2016. (pages accessible by changing number on url)
  4. 1 2 3 4 5 6 7 Haynes, W. M., ed. (2014). CRC Handbook of Chemistry and Physics (95 ed.). pp. 4–77–4–78. ISBN 9781482208672.
  5. Nicholls p1126-1127
  6. Meyer, R. J. (1974). "Nickel und Polonium". Gmelins Handbuch Der Anorganischen Chemie - Nickel: Teil B — Lieferung 2. Verbindungen bis Nickel-Polonium (in German). Berlin: Springer-Verlag. p. 764. ISBN 9783662133026.
  7. Leineweber, Andreas; Jacobs, Herbert; Hull, Steve (November 2001). "Ordering of Nitrogen in Nickel Nitride Ni3N Determined by Neutron Diffraction". Inorganic Chemistry. 40 (23): 5818–5822. doi:10.1021/ic0104860.
  8. Robert A. Scott (2011). "Boron: Inorganic Chemistry". Encyclopedia of Inorganic Chemistry. Wiley. p. 401. ISBN 9780470862100.
  9. 1 2 3 Muzangwa, L.G.; Ayles, V.L.; Nyambo, S.; Reid, S.A. (September 2011). "Probing the electronic structure of the nickel monohalides: Spectroscopy of the low-lying electronic states of NiBr and NiCl". Journal of Molecular Spectroscopy. 269 (1): 36–40. doi:10.1016/j.jms.2011.04.012.
  10. Hauffe1, Karl; Puschmann, Herbert (2008). "A26 nickel". Corrosion Handbook. Wiley. doi:10.1002/9783527610433.chb203030.
  11. Krishnamurty, V. G. (16 April 1952). "The band spectrum of the diatomic molecule NiBr extending from 3930 to 5000 Å has been obtained in emission using a heavy current discharge". Indian Journal of Physics and Proceedings of the Indian Association for the Cultivation of Science. 26: 429.
  12. Reddy, S Paddi; Rao, P Tiruvenganna (1 February 1960). "The Band Spectra of NiCl and NiBr in the Visible". Proceedings of the Physical Society. 75 (2): 275–279. doi:10.1088/0370-1328/75/2/314.
  13. Kant, Arthur (1968). "Mass-Spectrometric Studies of the Gaseous Systems Au-Ni, Au-Co, and Au-Fe, and Dissociation Energies of AuNi, AuCo, and AuFe". Journal of Chemical Physics. 49 (11): 5144. doi:10.1063/1.1670012.
  14. "Кристаллические структуры соединений Ni". www.kipt.kharkov.ua.
  15. 1 2 3 4 Hlukhyy, Viktor; Trots, Dmytro; Fässler, Thomas F. (13 January 2017). "First-Order Phase Transition in BaNi2Ge2 and the Influence of the Valence Electron Count on Distortion of the ThCr2 Si2 Structure Type". Inorganic Chemistry. doi:10.1021/acs.inorgchem.6b02190.
  16. 1 2 3 4 5 6 7 8 9 10 Cotton and Wilkinson (1966). Advanced Inorganic Chemistry: A Comprehensive Treatise. John Wiley & Sons. pp. 878–893.
  17. Mellor pp462-465
  18. Mellor p 466-467
  19. 1 2 Klasens, H. A.; Perdok, W. G.; Terpstra, P. (1 January 1936). "Crystallography of Magnesium-Sulphite, Cobalt-Sulphite and Nickel-Sulphite". Zeitschrift für Kristallographie - Crystalline Materials. 94 (1-6): 1–6. doi:10.1524/zkri.1936.94.1.1.
  20. 1 2 3 Budkuley, Jayant S.; Patil, K. C. (November 1990). "Synthesis, infrared spectra and thermoanalytical properties of transition metal sulfite hydrazine hydrates". Journal of Thermal Analysis. 36 (7-8): 2583–2592. doi:10.1007/BF01913655.
  21. 1 2 Elerman, Y.; Uraz, A. A.; Armağan, N. (15 November 1978). "An X-ray diffraction study of nickel thiosulphate hexahydrate". Acta Crystallographica Section B. 34 (11): 3330–3332. doi:10.1107/S0567740878010808.
  22. Elerman, Y.; Aydin Uraz, A.; Armagˇan, N.; Aka, Y. (1 August 1977). "Crystal data for calcium and nickel thiosulphate hexahydrates: CaS2O3.6H2O and NiS2O3.6H2O". Journal of Applied Crystallography. 10 (4): 362–363. doi:10.1107/S0021889877013673.
  23. Eliaz, N.; Sridhar, T.M.; Gileadi, E. (May 2005). "Synthesis and characterization of nickel tungsten alloys by electrodeposition". Electrochimica Acta. 50 (14): 2893–2904. doi:10.1016/j.electacta.2004.11.038.
  24. 1 2 Angerer, Paul; Tillmanns, Ekkehart; Wildner, Manfred (1999). "Crystal Structure Investigations of Amide Sulfate Tetrahydrates with Divalent Cations". Croatica Chemica Acta. 72 (2-3): 295–310. Retrieved 26 June 2016.
  25. 1 2 3 4 5 6 7 Vlaev, L. T.; Genieva, Svetlana D.; Georgieva, Velyana G. (16 May 2006). "Study of the crystallization fields of nickel(II) selenites in the system NiSeO3–SeO2–H2O". Journal of Thermal Analysis and Calorimetry. 86 (2): 449–456. doi:10.1007/s10973-005-7397-x.
  26. Keith Lascelles, Lindsay G. Morgan, David Nicholls, Detmar Beyersmann, "Nickel Compounds" in Ullmann's Encyclopedia of Industrial Chemistry Wiley-VCH, Weinheim, 2005. doi:10.1002/14356007.a17_235.pub2
  27. Bannister, E.; Cotton, F. A. (1960). "456. Phosphine oxide complexes. Part III. Bis(triphenylphosphine oxide)dinitrato-complexes of cobalt(II), nickel(II), copper(II), and zinc(II)". Journal of the Chemical Society (Resumed): 2276. doi:10.1039/JR9600002276.
  28. Isaacs, T. (7 November 1963). "The mineralogy and chemistry of the nickel carbonates" (PDF). Mineralogical Magazine. 33: 663–678. Retrieved 10 June 2016.
  29. 1 2 3 Timofeeva, M.N.; Panchenko, V.N.; Hasan, Zubair; Jhung, Sung Hwa (March 2013). "Catalytic potential of the wonderful chameleons: Nickel phosphate molecular sieves". Applied Catalysis A. 455: 71–85. doi:10.1016/j.apcata.2013.01.019.
  30. Mindat.org
  31. Lutz, H.D; Suchanek, E (December 2000). "Intramolecular coupling of BrO stretching vibrations in solid bromates, infrared and Raman spectroscopic studies on M(BrO3)2·6H2O (M=Mg, Co, Ni, Zn) and Ni(ClO3)2·6H2O". Spectrochimica Acta Part A. 56 (14): 2707–2713. doi:10.1016/S1386-1425(00)00310-3.
  32. ,Blackburn, AC; Gallucci, JC; Gerkin, RE (15 September 1991). "Structure of hexaaquanickel(II) bromate.". Acta Crystallographica Section C. 47 ( Pt 9): 1786–1789. PMID 1786165.
  33. Pies, W.; Weiss, A. (1976). "e517, XVI.4.3.1 Simple oxo-compounds of uranium (oxouranates), XVI.4.3.2 Simple oxo-compounds of uranium with H2O (oxouranates with H2O)": 91–94. doi:10.1007/10201569_22.
  34. 1 2 Young, A. P. (16 September 1966). "Nickel Orthouronate: High-Pressure Synthesis". Science. 153 (3742): 1380–1381. doi:10.1126/science.153.3742.1380.
  35. Baggio, S.; Becka, L. N. (15 June 1969). "A reinvestigation of the structure of nickel sulphite hexahydrate, NiSO3.6H2O". Acta Crystallographica Section B. 25 (6): 1150–1155. doi:10.1107/S0567740869003657.
  36. Salib, Kamal A. R.; El-Maraghy, Salah B.; El-Wafa, Samy M. Abu; El-Sayed, Saied M. (August 1989). "Normal sulphites of metals". Transition Metal Chemistry. 14 (4): 306–308. doi:10.1007/BF01098236.
  37. 1 2 3 Freire, Eleonora; Baggio, Sergio; Goeta, Andrés; Baggio, Ricardo (2001). "X-Ray Structural Study of Three New Nickel Thiosulfate Complexes". Australian Journal of Chemistry. 54 (5): 329. doi:10.1071/CH01074.
  38. 1 2 Freire, Eleonora; Baggio, Sergio; Suescun, Leopoldo; Baggio, Ricardo (2000). "X-Ray Study of Two Novel Nickel(II)–Thiosulfate Compounds". Australian Journal of Chemistry. 53 (9): 785. doi:10.1071/CH00108.
  39. 1 2 3 Mallela, S.P.; Lee, K.; Gehrs, P.F.; Christensen, J.I.; Sams, J.R.; Aubke, F. (1987). "The synthesis and characterisation of hetero-bimetallic sulfonate bridged coordination polymers of the type MIISnIV(SO3X)6 with X=F or CF3". Canadian Journal of Chemistry. 65 (11): 2649–2655. doi:10.1139/v87-438.
  40. 1 2 Kohn, Kay; Inoue, Katsuhiko; Horie, Osamu; Akimoto, Syun-Iti (May 1976). "Crystal chemistry of MSeO3 and MTeO3 (M=Mg, Mn, Co, Ni, Cu, and Zn)". Journal of Solid State Chemistry. 18 (1): 27–37. doi:10.1016/0022-4596(76)90075-X.
  41. 1 2 Amorós, Pedro; Marcos, M.Dolores; Roca, Manuel; Beltrán-Porter, Aurelio; Beltrán-Porter, Daniel (November 1996). "Synthetic Pathways for New Tubular Transition Metal Hydroxo- and Fluoro-Selenites: Crystal Structures ofM12(X)2(SeO3)8(OH)6(M=Co2+,Ni2+;X=OH−)". Journal of Solid State Chemistry. 126 (2): 169–176. doi:10.1006/jssc.1996.0325.
  42. 1 2 3 Krishnan, K.; Rama Rao, G.A.; Singh Mudher, K.D.; Venugopal, V. (June 1999). "Vaporization behaviour and Gibbs energy of formation of Ni2Te3O8, NiTe2O5 and Ni3TeO6". Journal of Alloys and Compounds. 288 (1-2): 96–101. doi:10.1016/S0925-8388(99)00079-1.
  43. 1 2 3 MARCOS, M; AMOROS, P; BELTRAN, A; BELTRAN, D (September 1993). "New tubular transition metal oxoanionic derivatives: a systematic approach to condensed phases of the dumortierite family". Solid State Ionics. 63-65: 87–95. doi:10.1016/0167-2738(93)90090-P.
  44. 1 2 3 Johnsson, Mats; Törnroos, Karl W.; Lemmens, Peter; Millet, Patrice (January 2003). "Crystal Structure and Magnetic Properties of a New Two-Dimensional S=1 Quantum Spin System Ni6(TeO3)4X2 (X=Cl, Br)". Chemistry of Materials. 15 (1): 68–73. doi:10.1021/cm0206587.
  45. Marcos, M. Dolores; Amoros, Pedro; Beltran-Porter, Aurelio; Martinez-Manez, Ramon; Attfield, J. Paul (January 1993). "Novel crystalline microporous transition-metal phosphites M11(HPO3)8(OH)6 (M=Zn, Co, Ni). X-ray powder diffraction structure determination of the cobalt and nickel derivatives". Chemistry of Materials. 5 (1): 121–128. doi:10.1021/cm00025a023.
  46. 1 2 3 "Кристаллические структуры соединений Ni". www.kipt.kharkov.ua.
  47. Polydoropoulos, C. N.; Yannakopoulos, Th. (1961). "Heavy metal hyponitrites" (PDF). Chimika Chronika. 26A: 70–73.
  48. Haag, J.M.; LeBret, G.C.; Cleary, D.A.; Twamley, B. (April 2005). "Room temperature synthesis and solid-state structure of Ni2P2O6·12H2O". Journal of Solid State Chemistry. 178 (4): 1308–1311. doi:10.1016/j.jssc.2004.12.005.
  49. McMurdie, Howard F.; Morris, Marlene C.; Evans, Eloise H.; Paretzkin, Boris; Wong-Ng, Winnie; Zhang, Yuming; Hubbard, Camden R. (28 October 2013). "Standard X-Ray Diffraction Powder Patterns from The JCPDS Research Associateship". Powder Diffraction. 2 (01): 41–52. doi:10.1017/S0885715600012239.
  50. "Details of selected material". AtomWork. Retrieved 9 July 2016.
  51. 1 2 3 Viltange, M. (1964). "Etude microanalytique des phosphates de nickel". Mikrochimica Acta (in French) (1): 1–16.
  52. Olbertz, A.; Stachel, D.; Svoboda, I.; Fuess, H. (1 January 1998). "Redetermination of the crystal structures of nickel cyclotetraphosphate, Ni2P4O12 and of cobalt cyclotetraphosphate, CO2P4O12". Zeitschrift für Kristallographie - New Crystal Structures. 213 (1-4). doi:10.1524/ncrs.1998.213.14.255.
  53. "Кристаллические структуры соединений Ni". www.kipt.kharkov.ua (in Russian). Retrieved 20 July 2016.
  54. "Annabergite" (PDF). Handbook of Mineralogy. 2005.
  55. Witteveen, H.T. (August 1971). "Magnetic susceptibility of NiAs2O4 and NiSb2O4". Solid State Communications. 9 (15): 1313–1315. doi:10.1016/0038-1098(71)90086-X.
  56. 1 2 Barbier, J.; Frampton, C. (1 August 1991). "Structures of orthorhombic and monoclinic Ni3(AsO4)2". Acta Crystallographica Section B. 47 (4): 457–462. doi:10.1107/S0108768191002987.
  57. Fleet, M. E.; Barbier, J. (1 June 1989). "Structure of aerugite (Ni8.5As3O16) and interrelated arsenate and germanate structural series". Acta Crystallographica Section B. 45 (3): 201–205. doi:10.1107/S0108768189002727.
  58. Chater, R.; Gavarri, J.R.; Hewat, A.W. (March 1987). "Évolution structurale sous pression de NiSb2O4: Compressibilités anisotropes et ordre magnetique". Journal of Solid State Chemistry. 67 (1): 98–103. doi:10.1016/0022-4596(87)90344-6.
  59. 1 2 Ehrenberg, H; Wltschek, G; Rodriguez-Carvajal, J; Vogt, T (April 1998). "Magnetic structures of the tri-rutiles NiTa2O6 and NiSb2O6". Journal of Magnetism and Magnetic Materials. 184 (1): 111–115. doi:10.1016/S0304-8853(97)01122-0.
  60. Bonazzi, Paola; Mazzi, Fiorenzo (1 December 1996). "Bottinoite, Ni(H2O)6[Sb(OH)6] 2; crystal structure, twinning, and hydrogen-bond model". American Mineralogist. 81 (11-12): 1494–1500. doi:10.2138/am-1996-11-1220.
  61. Okan, S. Erol; Champeney, D. C. (April 1997). "Molar conductance of aqueous solutions of sodium, potassium, and nickel trifluoromethanesulfonate at 25‡C". Journal of Solution Chemistry. 26 (4): 405–414. doi:10.1007/BF02767679.
  62. Fleet, M. E.; Barbier, J. (15 February 1988). "Structure of (Ni,Mg)10Ge3O16". Acta Crystallographica Section C. 44 (2): 232–234. doi:10.1107/S0108270187009880.
  63. Pertlik, F. (15 January 1986). "Structures of hydrothermally synthesized cobalt(II) carbonate and nickel(II) carbonate". Acta Crystallographica Section C. 42 (1): 4–5. doi:10.1107/S0108270186097524.
  64. Chemical Thermodynamics of Nickel. Elsevier. p. 238. ISBN 9780080457543.
  65. Chemical Thermodynamics of Nickel. Elsevier. p. 245. ISBN 9780080457543.
  66. 1 2 Hibble, Simon J.; Chippindale, Ann M.; Pohl, Alexander H.; Hannon, Alex C. (17 September 2007). "Surprises from a Simple Material—The Structure and Properties of Nickel Cyanide". Angewandte Chemie International Edition. 46 (37): 7116–7118. doi:10.1002/anie.200701246.
  67. Schmitt, Martin K.; Janka, Oliver; Niehaus, Oliver; Dresselhaus, Thomas; Pöttgen, Rainer; Pielnhofer, Florian; Weihrich, Richard; Krzhizhanovskaya, Maria; Filatov, Stanislav; Bubnova, Rimma; Bayarjargal, Lkhamsuren; Winkler, Björn; Glaum, Robert; Huppertz, Hubert (21 March 2017). "Synthesis and Characterization of the High-Pressure Nickel Borate γ-NiB4O7". Inorganic Chemistry. doi:10.1021/acs.inorgchem.7b00243.
  68. O'Brien, James F.; Reynolds, Warren Lind (November 1967). "Nuclear magnetic resonance study of cobalt and nickel tetrafluoroborates". Inorganic Chemistry. 6 (11): 2110–2111. doi:10.1021/ic50057a041.
  69. Ryss, A. I.; Radchenko, I. V. (1966). "X-ray study of aqueous solutions of nickel tetrafluoroborate". Journal of Structural Chemistry. 6 (4): 489–492. doi:10.1007/BF00744813.
  70. Rây, Nirmalendu Nath (20 April 1932). "Fluoberyllate und ihre Analogie mit den Sulfaten. II. Fluoberyllate einiger zweiwertiger Metalle". Zeitschrift für anorganische und allgemeine Chemie. 205 (3): 257–267. doi:10.1002/zaac.19322050307.
  71. Karnezos, M.; Friedberg, S. A. (August 1978). "FERROMAGNETISM IN NiSnF6.6H2O AND NiSiF6.6H2O". Le Journal de Physique Colloques. 39 (C6): C6–814–C6–815. doi:10.1051/jphyscol:19786362. Retrieved 14 May 2016.
  72. 1 2 3 4 Chacon, Lisa Carine (December 1997). "The Synthesis, Characterization and Reactivity of High Oxidation State Nickel Fluorides" (PDF). Berkeley California: University of California. Retrieved 27 April 2016.
  73. Davidovich, R. L.; Kaidalova, T. A.; Levchishina, T. F. (1971). "X-ray diffraction data for some divalent metal fluorotitanates". Journal of Structural Chemistry. 12 (1): 166–168. doi:10.1007/BF00744565.
  74. Christe, Karl O.; Wilson, William W.; Bougon, Roland A.; Charpin, Pierrette (January 1987). "Preparation and characterization of Ni(SbF6)2". Journal of Fluorine Chemistry. 34 (3-4): 287–298. doi:10.1016/S0022-1139(00)85173-8.
  75. Davidovich, R. L.; Buslaev, Yu. A.; Levchishina, T. F. (March 1968). "Synthesis of some new fluorohafnate complexes". Bulletin of the Academy of Sciences of the USSR Division of Chemical Science. 17 (3): 676–676. doi:10.1007/BF00911649.
  76. Karnezos, M.; Meier, D.; Friedberg, S. A. (9–12 December 1975). "Magnetic ordering in NiZrF6⋅6H20". AIP. Conference Proceedings. 29: 505. doi:10.1063/1.30416.
  77. Weinland, R. F.; Schlegelmilch, Fr. (7 March 1902). "Über Doppelsalze des Jodtrichlorids mit Chloriden zweiwertiger Metalle". Zeitschrift für anorganische Chemie. 30 (1): 134–143. doi:10.1002/zaac.19020300109.
  78. Sood, R. K.; Nya, A. E.; Etim, E. S. (December 1981). "Thermal decomposition of nickel azide". Journal of Thermal Analysis. 22 (2): 231–237. doi:10.1007/BF01915269.
  79. Abu-Eittah, R.; Elmakabaty, S. (1973). "Spectra of Nickel(II)-Azide Complexes in Organic Solvents". Bulletin of the Chemical Society of Japan. 46 (11): 3427–3431. doi:10.1246/bcsj.46.3427.
  80. IROM, I I (1 January 2001). "Photolysis of nickel hydroxy azide.". Global Journal of Pure and Applied Sciences. 7 (1): 73–80. doi:10.4314/gjpas.v7i1.16208.
  81. Tenten, A.; Jacobs, H. (June 1991). "Isolierte Ni6(NH2)12-Einheiten in Nickel(II)-Amid". Journal of the Less Common Metals. 170 (1): 145–159. doi:10.1016/0022-5088(91)90060-H.
  82. Lappert, Michael (2009). Metal amide chemistry. Chichester, U.K.: Wiley. pp. 172–173. ISBN 9780470721841.
  83. Downie, T. C.; Harrison, W.; Raper, E. S.; Hepworth, M. A. (15 March 1971). "A three-dimensional study of the crystal structure of nickel acetate tetrahydrate". Acta Crystallographica Section B. 27 (3): 706–712. doi:10.1107/S0567740871002802.
  84. FOX, P (January 1971). "The development of internal structure during thermal decomposition: Nickel formate dihydrate". Journal of Catalysis. 20 (1): 67–73. doi:10.1016/0021-9517(71)90007-8.
  85. 1 2 Krogmann, Klaus; Mattes, Rainer (January 1963). "Die Kristallstruktur von Nickelformiat, Ni(HCOO)2, 2H2O". Zeitschrift für Kristallographie - Crystalline Materials (in German). 118 (1-6). doi:10.1524/zkri.1963.118.16.291.
  86. Magyarosy, A.; Laidlaw, R.; Kilaas, R.; Echer, C.; Clark, D.; Keasling, J. (1 July 2002). "Nickel accumulation and nickel oxalate precipitation by Aspergillus niger". Applied Microbiology and Biotechnology. 59 (2-3): 382–388. doi:10.1007/s00253-002-1020-x.
  87. Vaidya, Sonalika; Rastogi, Pankaj; Agarwal, Suman; Gupta, Santosh K.; Ahmad, Tokeer; Antonelli, Anthony M.; Ramanujachary, K. V.; Lofland, S. E.; Ganguli, Ashok K. (August 2008). "Nanospheres, Nanocubes, and Nanorods of Nickel Oxalate: Control of Shape and Size by Surfactant and Solvent". Journal of Physical Chemistry C. 112 (33): 12610–12615. doi:10.1021/jp803575h.
  88. Zhan, Dan; Cong, Changjie; Diakite, Kahirou; Tao, Youtian; Zhang, Keli (June 2005). "Kinetics of thermal decomposition of nickel oxalate dihydrate in air". Thermochimica Acta. 430 (1-2): 101–105. doi:10.1016/j.tca.2005.01.029.
  89. Soyenkoff, Basil (January 1929). "Benzene Dispersions of Basic Soaps of Nickel and Iron". Journal of Physical Chemistry. 34 (11): 2519–2538. doi:10.1021/j150317a006.
  90. Mohamed, Mohamed A; Galwey, Andrew K; Halawy, Samih A (December 1998). "Kinetic and thermodynamic studies of the non-isothermal decompositions of nickel malonate dihydrate and nickel hydrogen malonate dihydrate". Thermochimica Acta. 323 (1-2): 27–36. doi:10.1016/S0040-6031(98)00492-4.
  91. Xiao, Xunwen; Xu, Wei; Li, Yan; Zhang, Bin; Zhu, Daoben (12 December 2003). "Dipotassium diaquabis(malonato-κ2O,O')nickelate(II) dihydrate". Acta Crystallographica Section E. 60 (1): m48–m49. doi:10.1107/S1600536803027508.
  92. McGinn, M. J.; Wheeler, B. R.; Galwey, A. K. (1971). "Thermal decomposition of nickel maleate". Transactions of the Faraday Society. 67: 1480. doi:10.1039/TF9716701480.
  93. McGinn, M. J.; Wheeler, B. R.; Galwey, A. K. (1970). "Thermal decomposition of nickel fumarate". Transactions of the Faraday Society. 66: 1809. doi:10.1039/TF9706601809.
  94. Guillou, Nathalie; Livage, Carine; Férey, Gérard (December 2006). "Cobalt and Nickel Oxide Architectures in Metal Carboxylate Frameworks: From Coordination Polymers to 3D Inorganic Skeletons". European Journal of Inorganic Chemistry. 2006 (24): 4963–4978. doi:10.1002/ejic.200600663.
  95. Lee, Julian; Reeves, Roger D.; Brooks, Robert R.; Jaffré, Tanguy (January 1978). "The relation between nickel and citric acid in some nickel-accumulating plants". Phytochemistry. 17 (6): 1033–1035. doi:10.1016/S0031-9422(00)94274-2.
  96. Rode, Sabine; Henninot, Christophe; Matlosz, Michael (2005). "Complexation Chemistry in Nickel and Copper-Nickel Alloy Plating from Citrate Baths". Journal of the Electrochemical Society. 152 (4): C248. doi:10.1149/1.1869980.
  97. Shen, Xiangqian; Jing, Maoxiang; Wang, Taoping; Cao, Kai (June 2006). "Preparation of Superfine Ni and Fe Fibers by the Organic Gel-Thermal Reduction Method". Rare Metal Materials and Engineering.
  98. 1 2 Wang, Lian-Ying; Wu, Guo-Qing; Evans, David G. (July 2007). "Synthesis and characterization of a layered double hydroxide containing an intercalated nickel(II) citrate complex". Materials Chemistry and Physics. 104 (1): 133–140. doi:10.1016/j.matchemphys.2007.02.098.
  99. Gajbhiye, N.S.; Prasad, Seema (August 1996). "Thermal decomposition of hexahydrated nickel iron citrate". Thermochimica Acta. 285 (2): 325–336. doi:10.1016/0040-6031(96)02906-1.
  100. Masłowska, J. (September 1984). "Thermal decomposition and thermofracto-chromatographic studies of metal citrates". Journal of Thermal Analysis. 29 (5): 895–904. doi:10.1007/BF02188835.
  101. 1 2 Guillou, Nathalie; Livage, Carine; Drillon, Marc; Férey, Gérard (10 November 2003). "The Chirality, Porosity, and Ferromagnetism of a 3D Nickel Glutarate with Intersecting 20-Membered Ring Channels". Angewandte Chemie International Edition. 42 (43): 5314–5317. doi:10.1002/anie.200352520.
  102. 1 2 3 Forster, Paul M; Yang, Zuag; Cheetham, Anthony K (April 2003). "Open framework metal monocarboxylates: nickel cyclopropionates containing 16- and 18-membered rings". Solid State Sciences. 5 (4): 635–642. doi:10.1016/S1293-2558(03)00055-4.
  103. 1 2 3 Tokareva, A. O.; Tereshchenko, D. S.; Boltalin, A. I.; Troyanov, S. I. (September 2006). "Acid Co(II) and Ni(II) trifluoroacetate complexes: Synthesis and crystal structure". Russian Journal of Coordination Chemistry. 32 (9): 663–668. doi:10.1134/S1070328406090077.
  104. SALOOJA, K. C. (March 1972). "Burner Fuel Additives*". Combustion Science and Technology. 5 (1): 243–249. doi:10.1080/00102207208952528.
  105. Galwey, A. K. (1965). "1152. The thermal decomposition of nickel benzoate and of the nickel salt of cyclohexanecarboxylic acid". Journal of the Chemical Society: 6188. doi:10.1039/JR9650006188.
  106. 1 2 Vráblová, Anna; Falvello, Larry R.; Campo, Javier; Miklovič, Jozef; Boča, Roman; Černák, Juraj; Tomás, Milagros (February 2016). "Preparation, First Structure Analysis, and Magnetism of the Long-Known Nickel Benzoate Trihydrate - A Linear Ni···Ni···Ni Polymer and Its Parallels with the Active Site of Urease". European Journal of Inorganic Chemistry. 2016 (6): 928–934. doi:10.1002/ejic.201501255.
  107. 1 2 3 Sherif, Fawzy G. (1 September 1970). "Heavy Metal Terephthalates". Industrial & Engineering Chemistry Product Research and Development. 9 (3): 408–412. doi:10.1021/i360035a026.
  108. 1 2 Baker, Edward N.; Baker, Heather M.; Anderson, Bryan F.; Reeves, Roger D. (January 1983). "Chelation of nickel(II) by citrate. The crystal structure of a nickel–citrate complex, K2[Ni(C6H5O7)(H2O)2]2·4H2O". Inorganica Chimica Acta. 78: 281–285. doi:10.1016/S0020-1693(00)86530-5.
  109. Yao, Hua-Gang; Huang, Jia-Na; Deng, Run-Kang; Yao, Zhi-Bang (17 August 2013). "Dipotassium tetraaquabis(μ-citrato-κ : ′, ′′, ′′′)nickelate(II) tetrahydrate". Acta Crystallographica Section E. 69 (9): m502–m503. doi:10.1107/S1600536813022630.
  110. Strouse, Jane; Layten, Steven W.; Strouse, Charles E. (January 1977). "Structural studies of transition metal complexes of triionized and tetraionized citrate. Models for the coordination of the citrate ion to transition metal ions in solution and at the active site of aconitase". Journal of the American Chemical Society. 99 (2): 562–572. doi:10.1021/ja00444a041.
  111. 1 2 3 4 Zhou, Zhao-Hui; Lin, Yi-Ji; Zhang, Hong-Bin; Lin, Guo-Dong; Tsai, Khi-Rui (5 October 2006). "SYNTHESES, STRUCTURES AND SPECTROSCOPIC PROPERTIES OF NICKEL(II) CITRATO COMPLEXES, ((NH4)2[Ni(Hcit)(H2O)2]2-2H2O AND (NH4)4[Ni(Hcit)2]-2H2O". Journal of Coordination Chemistry. 42 (1-2): 131–141. doi:10.1080/00958979708045286.
  112. Deng, Yuan-Fu; Zhang, Hua-Lin; Hong, Qi-Ming; Weng, Wei-Zheng; Wan, Hui-Lin; Zhou, Zhao-Hui (November 2007). "Titanium-based mixed oxides from a series of titanium(IV) citrate complexes". Journal of Solid State Chemistry. 180 (11): 3152–3159. doi:10.1016/j.jssc.2007.08.033.
  113. Bullen, G. J.; Mason, R.; Pauling, Peter (April 1965). "The Crystal and Molecular Structure of Bis(acetylacetonato)nickel (II)". Inorganic Chemistry. 4 (4): 456–462. doi:10.1021/ic50026a005.
  114. Habenschuss, Michael (1974). "An x-ray, spectroscopic, and magnetic study of the structure of nickel squarate dihydrate, NiC4O4 [middle dot] 2H2O". Journal of Chemical Physics. 61 (3): 852. doi:10.1063/1.1682025.
  115. Brach, I.; Rozière, J.; Anselment, B.; Peters, K. (15 March 1987). "An X-ray structure determination of cobalt and nickel squarate octahydrate, [M(H2O)6](C4HO4)2.2H2O (M=Ni,Co)". Acta Crystallographica Section C. 43 (3): 458–460. doi:10.1107/S0108270187095386.
  116. West, Robert.; Niu, Hsien Ying. (September 1963). "New Aromatic Anions. VI. Complexes of Croconate Ion with Some Divalent and Trivalent Metals". Journal of the American Chemical Society. 85 (17): 2586–2588. doi:10.1021/ja00900a013.
  117. Chen, Hong-Yu; Fang, Qi; Xue, Gang; Yu, Wen-Tao (19 November 2005). "Polydi-μ2-aqua-di-μ5-croconato(2–)-nickel(II)dipotassium(I) tetrahydrate". Acta Crystallographica Section C. 61 (12): m535–m537. doi:10.1107/S0108270105036322.
  118. Adiwidjaja, G.; Küppers, H. (15 May 1976). "Nickel dihydrogen diphthalate hexahydrate". Acta Crystallographica Section B. 32 (5): 1571–1574. doi:10.1107/S0567740876005840.
  119. Wang, Xia; Xinxin Zhuang; Genbo Su; Youping He (2008). "A new ultraviolet filter: Rb2Ni (SO4)2·6H2O (RNSH) single crystal" (PDF). Optical Materials. 31 (2): 233–236. ISSN 0925-3467. doi:10.1016/j.optmat.2008.03.020.
  120. "Nickelboussingaultite: Nickelboussingaultite mineral information and data.". www.mindat.org. Retrieved 3 May 2016.
  121. "Nickelblödite: Nickelblödite mineral information and data.". www.mindat.org. Retrieved 4 May 2016.
  122. Montgomery, H. (15 September 1980). "Diammonium nickel bis(tetrafluoroberyllate)hexahydrate". Acta Crystallographica Section B. 36 (9): 2121–2123. doi:10.1107/S0567740880008060.
  123. Rây, Nirmalendunath (18 April 1936). "Fluoberyllate und ihre Analogie mit Sulfaten. IV. Doppelsalze mit Rubidium- und Cäsiumfluoberyllaten". Zeitschrift für anorganische und allgemeine Chemie (in German). 227 (1): 32–36. doi:10.1002/zaac.19362270105.
  124. Bose, A.; Mitra, S. C.; Datta, S. K. (11 November 1958). "The Behaviour of the Paramagnetic Ions in the Single Crystals of Some Similarly Constituted Salts of the Iron Group of Elements. II. Hydrated NiFormula Salts". Proceedings of the Royal Society A. 248 (1253): 153–168. doi:10.1098/rspa.1958.0236.
  125. "Nickelzippeite: Nickelzippeite mineral information and data.". www.mindat.org. Retrieved 10 May 2016.
  126. Reilly, James J.; Wiswall, Richard H. (November 1968). "Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4". Inorganic Chemistry. 7 (11): 2254–2256. doi:10.1021/ic50069a016.
  127. Dutreilh, M.; Chevalier, C.; El-Ghozzi, M.; Avignant, D.; Montel, J.M. (January 1999). "Synthesis and Crystal Structure of a New Lithium Nickel Fluorophosphate Li2[NiF(PO4)] with an Ordered Mixed Anionic Framework". Journal of Solid State Chemistry. 142 (1): 1–5. doi:10.1006/jssc.1998.7908.
  128. Ellis, Brian L.; Makahnouk, W. R. Michael; Rowan-Weetaluktuk, W. N.; Ryan, D. H.; Nazar, Linda F. (9 February 2010). "Crystal Structure and Electrochemical Properties of A2 MPO4 F Fluorophosphates (A=Na, Li; M=Fe, Mn, Co, Ni)". Chemistry of Materials. 22 (3): 1059–1070. doi:10.1021/cm902023h.
  129. Nickel, E. H.; Bridge, P. J. (March 1977). "Nickelblödite Na2Ni(SO4)2.4H2O, a new mineral from Western Australia" (PDF). Mineralogical Magazine. 41: 37–41. Retrieved 10 July 2016.
  130. Swanson, H. E.; H. F. McMurdie; M. C. Morris; E. H. Evans (September 1970). "Standard X-ray Diffraction Powder Patterns" (PDF). National Bureau of Standards Monograph 25 Section 6. National Bureau of Standards. p. 46. Retrieved 5 July 2013.
  131. Swanson, H. E.; H. F. McMurdie; M. C. Morris; E. H. Evans (September 1970). "Standard X-ray Diffraction Powder Patterns" (PDF). National Bureau of Standards Monograph 25 Section 8. National Bureau of Standards. p. 72. Retrieved 5 July 2013.
  132. AtomWork materials database at NIMS
  133. Lepierre, Ch.; Lachaud, M. (1 July 1892). "Chimie Minerale - Recherche sur le nickel et le cobalt". Comptes rendus hebdomadaires des séances de l'Académie des sciences. 115: 115. Retrieved 11 July 2016.
  134. Hamida, Makram Ben (July 2007). Oxo-Selenate(IV) und Oxo-Arsenate(III) der SeltenErd-Metalle und ihre Derivate (Thesis). Carl von Ossietzky Universität Oldenburg. p. 147.
  135. Hamida, Makram Ben (July 2007). Oxo-Selenate(IV) und Oxo-Arsenate(III) der SeltenErd-Metalle und ihre Derivate (Thesis). Carl von Ossietzky Universität Oldenburg. p. 149.
  136. Barthelmy, Dave. "Honessite Mineral Data". webmineral.com. Retrieved 10 July 2016.
  137. "NiTi(SO4)3 (TiNi[SO4]3) Crystal Structure". Springer.
  138. "AtomWork".
  139. Ebert, M.; Vojtíšek, P. (1993). "The Hydrates of Double Selenates". Chemical Papers. 47 (5): 292–296.
  140. 1 2 3 4 Tutton, A. E. H. (1 January 1918). "Monoclinic Double Selenates of the Nickel Group". Philosophical Transactions of the Royal Society of London, Series A. 217: 199–235. JSTOR 91121.
  141. Euler, Η.; Barbier, Β.; Meents, A.; Kirfel, A. (January 2003). "Crystal structure of Tutton′s salts, Cs2[MII(H2O)6](SeO4)2, M=Mg, Μn, Co, Ni, Zn". Zeitschrift für Kristallographie - New Crystal Structures. 218 (JG). doi:10.1524/ncrs.2003.218.jg.437. open access
  142. Tutton, A. E. H. (1 January 1928). "The Hexahydrated Double Selenates Containing Thallium. Completion of the Thallium Salts and of the Whole Monoclinic Series". Proceedings of the Royal Society of London, Series A. 118 (780): 393–426. JSTOR 94913.
  143. 1 2 ElMaadi, A.; Boukhari, A.; Holt, E. M. (September 1995). "Crystal structures of the new diphosphates, K2NiP2O7 and K6Sr2Ni5(P2O7)5". Journal of Chemical Crystallography. 25 (9): 531–536. doi:10.1007/BF01667020.
  144. Krickl, Robert; Wildner, Manfred (1 November 2007). "Crystal chemistry of synthetic Co- and Ni-analogues of natrochalcite – the shortest known hydrogen bonds among mineral-type compounds Part I: Single-crystal X-ray structures". European Journal of Mineralogy. 19 (6): 805–816. doi:10.1127/0935-1221/2007/0019-1770.
  145. 1 2 El-Bali, B.; Bolte, M.; Boukhari, A.; Aride, J.; Taibe, M. (15 May 1999). "BaNi2 (PO4 )2". Acta Crystallographica Section C. 55 (5): 701–702. doi:10.1107/S0108270199000499.
  146. Rogado, N.; Huang, Q.; Lynn, J. W.; Ramirez, A. P.; Huse, D.; Cava, R. J. (4 April 2002). "A two-dimensional honeycomb antiferromagnet". Physical Review B. 65 (14). doi:10.1103/PhysRevB.65.144443.
  147. David, Rénald (5 April 2016). "Synthesis and crystal structure of Na4Ni7(AsO4)6" (PDF). Acta Crystallographica Section E. 72 (5): 632–634. doi:10.1107/S2056989016005417. Retrieved 16 July 2016.
  148. Zheng, Y. Q.; Adam, A. (15 September 1994). "Potassium trans-tetraaquadicarbonatonickelate(II), K2[Ni(CO3)2(H2O)4]". Acta Crystallographica Section C. 50 (9): 1422–1424. doi:10.1107/S0108270193012855.
  149. Zheng, Y. Q.; Adam, A. (1 January 1995). "Crystal structure of dirubidium trans-tetraaquabis(carbonato)-cobaltate(II), Rb2[Co(CO3)2(H2O)4] and dirubidium trans-tetraaquabis(carbonato)-nickelate(II), Rb2[Ni(CO3)2(H2O)4]". Zeitschrift für Kristallographie - Crystalline Materials. 210 (6). doi:10.1524/zkri.1995.210.6.447.
  150. 1 2 3 Chernorukov, N. G.; Knyazev, A. V.; Sazonov, A. A. (11 October 2009). "Synthesis, structure, and physicochemical properties of bivalent element hexanitratothorates". Radiochemistry. 51 (5): 437–440. doi:10.1134/S1066362209050014.
  151. Chippindale, AM; Sharma, AV; Hibble, SJ (30 April 2009). "Potassium nickel(II) gallium phosphate hydrate, K[NiGa(2)(PO(4))(3)(H(2)O)(2)].". Acta Crystallographica Section E. 65 (Pt 5): i38–i39. PMID 21583729.
  152. Moutataouia, Meryem; Lamire, Mohammed; Saadi, Mohamed; El Ammari, Lahcen (24 December 2013). "Potassium trinickel(II) orthophosphate diphosphate, KNi3(PO4 )P7O7". Acta Crystallographica Section E. 70 (1): i5–i5. doi:10.1107/S1600536813034089.
  153. Galoisy, L; Calas, G (March 1993). "XANES and crystal field spectroscopy of five-coordinated Nickel(II) in potassium-nickel phosphate". Materials Research Bulletin. 28 (3): 221–228. doi:10.1016/0025-5408(93)90155-7.
  154. 1 2 Trobajo, Camino; Salvadó, Miguel A.; Pertierra, Pilar; Alfonso, Belén F.; Blanco, Jesús A.; Khainakov, Serguei A.; García, José R. (September 2007). "Synthesis, Structure and Magnetic Characterization of Two Phosphate Compounds Related with the Mineral Struvite: KNiPO4μ·μ6H2O and NaNiPO4μ·μ7H2O". Zeitschrift für anorganische und allgemeine Chemie. 633 (11-12): 1932–1936. doi:10.1002/zaac.200700342.
  155. 1 2 3 4 Sbai, Kacem; Atibi, Azeddine; Kenz, Abdelkebir; Tace, Elmostafa; Tridane, Malika (2003). "CHEMICAL PREPARATION AND CRYSTAL DATA FOR TWO CONDENSED PHOSPHATES NiCs4(PO3)6 AND NiK4(P3O9)2". Phosphorus Research Bulletin. 16 (0): 107–111. doi:10.3363/prb1992.16.0_107.
  156. Moutataouia, Meryem; Lamire, Mohammed; Saadi, Mohamed; El Ammari, Lahcen (12 May 2012). "Sodium pentapotassium pentanickel tetra(diphosphate), NaK5Ni5(P2O7)3". Acta Crystallographica Section E. 68 (6): i43–i43. doi:10.1107/S160053681202017X.
  157. Guerra-López, J.; Gómez, A.; Pomés, R.; González, R. (10 January 2013). "X-ray powder diffraction data for ammonium nickel phosphate monohydrate". Powder Diffraction. 10 (03): 152–153. doi:10.1017/S0885715600014627.
  158. Blachnik, R.; Wiest, Th.; Dülmer, A.; Reuter, H. (1 January 1997). "The crystal structure of ammonium hexaaquanickel(II) phosphate". Zeitschrift für Kristallographie - Crystalline Materials. 212 (1). doi:10.1524/zkri.1997.212.1.20.
  159. Wu, Xuehang; Wu, Wenwei; Li, Shushu; Cui, Xuemin; Liao, Sen (7 October 2010). "Kinetics and thermodynamics of thermal decomposition of NH4NiPO4·6H2O". Journal of Thermal Analysis and Calorimetry. 103 (3): 805–812. doi:10.1007/s10973-010-1057-5.
  160. Haferburg, Götz; Kloess, Gert; Schmitz, Werner; Kothe, Erika (June 2008). ""Ni-struvite" – A new biomineral formed by a nickel resistant Streptomyces acidiscabies". Chemosphere. 72 (3): 517–523. doi:10.1016/j.chemosphere.2008.02.050.
  161. Warda, S. A.; Lee, S.-L. (1 January 1997). "Refinement of the crystal structure of lithium nickel phosphate, LiNiPO4". Zeitschrift für Kristallographie - New Crystal Structures. 212 (1). doi:10.1524/ncrs.1997.212.1.319.
  162. 1 2 Korchemkin, I. V.; Pet’kov, I. V.; Kurazhkovskaya, V. S.; Borovikova, E. Yu. (25 March 2015). "Synthesis of sodium nickel phosphate and its crystallographic, spectroscopic, and temperature-controlled X-ray diffraction study". Russian Journal of Inorganic Chemistry. 60 (3): 265–269. doi:10.1134/S0036023615030092.
  163. Minakshi, Manickam; Mitchell, David; Jones, Rob; Alenazey, Feraih; Watcharatharapong, Teeraphat; Chakraborty, Sudip; Ahuja, Rajeev (2016). "Synthesis, structural and electrochemical properties of sodium nickel phosphate for energy storage devices". Nanoscale. 8 (21): 11291–11305. doi:10.1039/C6NR01179A.
  164. Moring, J.; Kostiner, E. (March 1986). "The crystal structure of Na4Ni7(PO4)6". Journal of Solid State Chemistry. 62 (1): 105–111. doi:10.1016/0022-4596(86)90221-5.
  165. Azzaoui, Khalil; Essehli, Rachid; Mejdoubi, El Miloud; El Bali, Brahim; Dusek, Michal; Fejfarova, Karla (2012). "Na3MP3O10.12H2O (M=Co, Ni): Crystal Structure and IR Spectroscopy". International Journal of Inorganic Chemistry. 2012: 1–6. doi:10.1155/2012/702471.
  166. Yakubovich, O; Kiriukhina, G; Dimitrova, O; Volkov, A; Golovanov, A; Volkova, O; Zvereva, E; Baidya, S; Saha-Dasgupta, T; Vasiliev, A (1 October 2013). "Crystal structure and magnetic properties of a new layered sodium nickel hydroxide phosphate, Na2Ni3(OH)2(PO4)2.". Dalton Transactions. 42 (41): 14718–14725. PMID 23877251. doi:10.1039/c3dt51657a.
  167. Kacem Sbai, Azzeddine Atibi, Addelkrim Charaf, Mohamed Radid, A. Jouini (2001). "Etude des spectres vibrationnels et des proprietes physico-chimiques du cyclotriphosphate mixte de nickel et de sodium hexahydrate, NiNa4(P3O9)2.6H2O". Annales de Chimie Science des Matériaux (in French). 26 (6): 45–61. ISSN 0151-9107.
  168. Tridane, M.; Belaaouad, S.; Sbai, K. (November 2000). "Chemical preparations and crystal data for eight new condensed phosphates". Solid State Sciences. 2 (7): 701–704. doi:10.1016/S1293-2558(00)01081-5.
  169. 1 2 Sbai, Kacem; Atibi, Azzeddine; Belaaouad, Saïd; Moutaabid, Mohamed (October 2002). "Etude Des Proprietes Physico-Chimiques du Cyclotriphosphate Mixte de Nickel et D'argent Hexahydrate, NiAg 4 (P 3 O 9 ) 2 ·6H 2 O". Phosphorus, Sulfur, and Silicon and the Related Elements. 177 (10): 2345–2362. doi:10.1080/10426500214290.
  170. Ezzaafrani, M.; Ennaciri, Abdelaziz; Harcharras, Mohamed; Khaoulaf, Redouane; Capitelli, Francesco (March 2012). "Crystal structure and infrared spectrum of new magnesium tetra-ammonium cyclotriphosphate tetrahydrate Mg(NH4 )4(P3O9)2· 4 H2O". Zeitschrift für Kristallographie. 227 (3): 141–146. doi:10.1524/zkri.2012.1472.
  171. 1 2 3 Panahandeh, Ahmad; Jung, Walter (September 2003). "The Oxidation of Heterogeneous Tl/Ni/P-Alloys— Preparation and Crystal Structures of the Thallium Nickel Phosphates TlNi4(PO4)3, Tl4Ni7(PO4)6, and Tl2Ni4(P2O7)(PO4)2". Zeitschrift für anorganische und allgemeine Chemie. 629 (10): 1651–1660. doi:10.1002/zaac.200300133.
  172. "NiMnSb (MnNiSb) Crystal Structure - SpringerMaterials". materials.springer.com.
  173. Zhang, Rui-Jing; Eckern, Ulrich; Schwingenschlögl, Udo (27 August 2014). "Fate of Half-Metallicity Near Interfaces: The Case of NiMnSb/MgO and NiMnSi/MgO". ACS Applied Materials & Interfaces. 6 (16): 14516–14521. doi:10.1021/am5037753.
  174. Johnson, V. (May 1975). "Diffusionless orthorhombic to hexagonal transitions in ternary silicides and germanides". Inorganic Chemistry. 14 (5): 1117–1120. doi:10.1021/ic50147a032.
  175. 1 2 3 Bazela, W.; Szytuła, A.; Todorović, J.; Tomkowicz, Z.; Zięba, A. (16 December 1976). "Crystal and magnetic structure of NiMnGe". Physica Status Solidi A. 38 (2): 721–729. doi:10.1002/pssa.2210380235.
  176. 1 2 3 "Соединения Ni (тома 11-14)". Retrieved 28 July 2016.
  177. Mellor 405-406
  178. Goedken, V. L.; Vallarino, L. M.; Quagliano, J. V. (December 1971). "Cationic ligands. Coordination of the 1,1,1-trimethylhydrazinium cation to nickel(II)". Inorganic Chemistry. 10 (12): 2682–2685. doi:10.1021/ic50106a011.
  179. 1 2 3 4 5 Mellor p419
  180. Meredith, M. Brett; McMillen, C. Heather; Goodman, Jonathan T.; Hanusa, Timothy P. (August 2009). "Ambient temperature imidazolium-based ionic liquids with tetrachloronickelate(II) anions". Polyhedron. 28 (12): 2355–2358. doi:10.1016/j.poly.2009.04.037.
  181. Cotton, F. A.; Faut, O. D.; Goodgame, D. M. L. (January 1961). "Preparation, Spectra and Electronic Structures of Tetrahedral Nickel(II) Complexes Containing Triphenylphosphine and Halide Ions as Ligands". Journal of the American Chemical Society. 83 (2): 344–351. doi:10.1021/ja01463a021.
  182. 1 2 3 Mellor p420
  183. "Inorganic chemistry Abstracts". Journal of the Chemical Society, Abstracts. 46: 1254. 1884. doi:10.1039/CA8844601254.
  184. Mellor 457
  185. Bhattacharya, Santanu; Saha, Basudeb; Dutta, Amitava; Banerjee, Pradyot (March 1998). "Electron transfer reactions of nickel(III) and nickel(IV) complexes". Coordination Chemistry Reviews. 170 (1): 47–74. doi:10.1016/S0010-8545(98)00065-4.
  186. Jantsch, G. (11 June 1912). "Zur Kenntnis der Doppelnitrate der seltenen Erden. II. Mitteilung". Zeitschrift für anorganische Chemie. 76 (1): 303–323. doi:10.1002/zaac.19120760112.
  187. Mess, K.W.; Lagendijk, E.; Zimmerman, N.J.; Van Duyneveldt, A.J.; Giesen, J.J.; Huiskamp, W.J. (July 1969). "Magnetic and caloric study of the phase transitions of copper, nickel, manganese and cobalt lanthanum double nitrate". Physica. 43 (2): 165–208. doi:10.1016/0031-8914(69)90001-9.
  188. Urbain, G. (1 July 1904). "Sur une terre yttrique voisine du gadolinium". Comptes rendus hebdomadaires des séances de l'Académie des sciences. 139 (7): 736–738. Retrieved 14 July 2016.
  189. 1 2 Tenten, A.; Jacobs, H. (December 1991). "Substitutionsvarianten von Nickel(II) amid: ternäre amidoniccolate mit Lithium und Caesium Li3Ni4(NH2)11·NH3 und Cs2Ni(NH2)4·NH3". Journal of Alloys and Compounds. 177 (2): 193–217. doi:10.1016/0925-8388(91)90074-6.
  190. Jacobs, Herbert; Niewa, Rainer; Sichla, Thomas; Tenten, Andreas; Zachwieja, Uwe (January 1997). "Metal nitrogen compounds with unusual chemical bonding: nitrides, imides, amides and ammine complexes". Journal of Alloys and Compounds. 246 (1-2): 91–100. doi:10.1016/S0925-8388(96)02458-9.
  191. Tenten, A.; Jacobs, H. (October 1991). "Partielle Substitution von Nickel durch Natrium in Nickel(II)-amid: Isolierte Na4Ni2(NH2)8•4NH3-Einheiten in Natriumtetraamidoniccolat(II)-diammoniakat". Zeitschrift für anorganische und allgemeine Chemie (in German). 604 (1): 113–126. doi:10.1002/zaac.19916040115.
  192. Schmitz-DuMont, O.; Uecker, G.; Schaal, W. (October 1969). "Dihydrogenphosphide und Dihydrogenphosphidosalze der Übergangsmetalle. I. Nickel(II)-dihydrogenphosphid und Kalium-tris-[dihydrogen-phosphido]-niccolat (II)". Zeitschrift für anorganische und allgemeine Chemie. 370 (1-2): 67–79. doi:10.1002/zaac.19693700108.
  193. 1 2 3 4 5 Mellor p443
  194. Ephraim, Fritz (17 September 1923). "Über Nickelsulfid". Berichte der deutschen chemischen Gesellschaft (A and B Series) (in German). 56 (8): 1885–1886. doi:10.1002/cber.19230560825.
  195. Bronger, W.; Eyck, J.; Rüdorff, W.; Stöussel, A. (July 1970). "Über Thio- und Selenoniccolate und -palladate der schweren Alkalimetalle". Zeitschrift für anorganische und allgemeine Chemie (in German). 375 (1): 1–7. doi:10.1002/zaac.19703750102.
  196. Schneider, R. (1874). "Ueber neue Schwefelsalze". Annalen der Physik und Chemie. 227 (3): 437–450. doi:10.1002/andp.18742270306.
  197. Neilson, James R.; McQueen, Tyrel M.; Llobet, Anna; Wen, Jiajia; Suchomel, Matthew R. (24 January 2013). "Charge density wave fluctuations, heavy electrons, and superconductivity in KNi2 S2". Physical Review B. 87 (4). doi:10.1103/PhysRevB.87.045124.
  198. 1 2 Bronger, W.; Eyck, J.; Rüdorff, W.; Stöussel, A. (July 1970). "Über Thio- und Selenoniccolate und -palladate der schweren Alkalimetalle". Zeitschrift für anorganische und allgemeine Chemie. 375 (1): 1–7. doi:10.1002/zaac.19703750102.
  199. 1 2 3 Bronger, W.; Rennau, R.; Schmitz, D. (May 1991). "Schichtstrukturen ternärer Chalkogenide A2M3X4 (A ? K, Rb, Cs; M ? Ni, Pd, Pt; X ? S, Se)". Zeitschrift für anorganische und allgemeine Chemie. 597 (1): 27–32. doi:10.1002/zaac.19915970105.
  200. Neilson, James R.; McQueen, Tyrel M. (9 May 2012). "Bonding, Ion Mobility, and Rate-Limiting Steps in Deintercalation Reactions with ThCr2Si2 -type KNi2 Se2". Journal of the American Chemical Society. 134 (18): 7750–7757. doi:10.1021/ja212012k.
  201. Huimin Chen; Yang, Jinhu; Cao, Chao; Li, Lin; Su, Qiping; Chen, Bin; Wang, Hangdong; Mao, Qianhui; Xu, Binjie; Du, Jianhua; Minghu Fang (1 April 2016). "Superconductivity in a new layered nickel selenide CsNi2Se2". Superconductor Science and Technology. 29 (4): 045008. doi:10.1088/0953-2048/29/4/045008.
  202. Wang, Hangdong; Dong, Chiheng; Mao, Qianhui; Khan, Rajwali; Zhou, Xi; Li, Chenxia; Chen, Bin; Yang, Jinhu; Su, Qiping; Fang, Minghu (12 November 2013). "Multiband Superconductivity of Heavy Electrons in a TlNi2Se2 Single Crystal". Physical Review Letters. 111 (20). doi:10.1103/PhysRevLett.111.207001.
  203. Hasegawa, Takumi; Inui, Mitsutaka; Hondou, Katsuhiro; Fujiwara, Yishihiro; Kato, Tetsuya; Iio, Katsunori (February 2004). "Raman spectroscopy on ternary transition metal chalcogenide Rb2Ni3S4". Journal of Alloys and Compounds. 364 (1-2): 199–207. doi:10.1016/S0925-8388(03)00503-6.
  204. 1 2 Bronger, Welf; Rennau, R. M.; Schmitz, D. (April 1996). "Darstellung und Kristallstruktur von Rb2Ni3Se4". Zeitschrift für anorganische und allgemeine Chemie. 622 (4): 627–629. doi:10.1002/zaac.19966220409.
  205. 1 2 Mellor p444
  206. Mellor p445
  207. 1 2 3 4 5 6 Mellor p446
  208. 1 2 3 Rommel, Stefan Michael; Krach, Alexander; Peter, Philipp; Weihrich, Richard (25 April 2016). "Conversion Reactions of Solids: From a Surprising Three-Step Mechanism towards Directed Product Formation". Chemistry. 22 (18): 6333–6339. doi:10.1002/chem.201505209.
  209. Mamedova, N. A.; Ragimov, S. S.; Sadykhov, F. M.; Aliev, I. I. (17 February 2012). "Preparation and physicochemical study of nickel(II) thiostannate in the NiCl2-SnS2-H2O system". Russian Journal of Inorganic Chemistry. 57 (2): 160–162. doi:10.1134/S0036023612020179.
  210. Popescu, M. A. Non-Crystalline Chalcogenicides. Springer Science & Business Media. p. 73. ISBN 9781402003592.
  211. 1 2 Di Salvo, F.J.; Chen, C.H.; Fleming, R.M.; Waszczak, J.V.; Dunn, R.G.; Sunshine, S.A.; Ibers, James A. (February 1986). "Physical and structural properties of the new layered compounds Ta2NiS5 and Ta2NiSe5". Journal of the Less Common Metals. 116 (1): 51–61. doi:10.1016/0022-5088(86)90216-X.
  212. 1 2 Tremel, Wolfgang (July 1991). "Isolated and Condensed Ta2Ni2 Clusters in the Layered Tellurides Ta2Ni2Te4 and Ta2Ni3Te5". Angewandte Chemie International Edition in English. 30 (7): 840–843. doi:10.1002/anie.199108401.
  213. Greening, C.; Berney, M.; Hards, K.; Cook, G. M.; Conrad, R. (3 March 2014). "A soil actinobacterium scavenges atmospheric H2 using two membrane-associated, oxygen-dependent [NiFe] hydrogenases". Proceedings of the National Academy of Sciences. 111 (11): 4257–4261. doi:10.1073/pnas.1320586111.
  214. Karplus PA, Pearson MA, Hausinger RP (1997). "70 years of crystalline urease: What have we learned?". Accounts of Chemical Research. 30 (8): 330–337.
  215. EVANS, D (August 2005). "Chemistry relating to the nickel enzymes CODH and ACS". Coordination Chemistry Reviews. 249 (15-16): 1582–1595. doi:10.1016/j.ccr.2004.09.012.
  216. Wuerges, J.; Lee, J.-W.; Yim, Y.-I.; Yim, H.-S.; Kang, S.-O.; Carugo, K. D. (1 June 2004). "Crystal structure of nickel-containing superoxide dismutase reveals another type of active site". Proceedings of the National Academy of Sciences. 101 (23): 8569–8574. doi:10.1073/pnas.0308514101.
  217. Cammack, Richard; Vliet, Pieter (1999). "Catalysis by Nickel in Biological Systems". In Reedijk, Jan; Bouwman, Elisabeth. Bioinorganic Catalysis (2 ed.). New York: Marcel Dekker. p. 233. ISBN 0-8247-0241-7.
  218. Jolly, P. W.; Wilke, G. (1975). The organic chemistry of nickel. 2. New York: Academic Press. ISBN 0-12-388402-0.
  219. 1 2 3 4 5 6 7 8 Jolly, P. W.; Wilke, G. (1974). The organic chemistry of nickel. 1. New York: Academic Press. pp. 1–9. ISBN 0-12-388401-2.
  220. Jolly, P. W.; Wilke, G. (1974). The organic chemistry of nickel. 1. New York: Academic Press. pp. 20–22. ISBN 0-12-388401-2.
  221. Jolly, P. W.; Wilke, G. (1974). The organic chemistry of nickel. 1. New York: Academic Press. pp. 23–24. ISBN 0-12-388401-2.
  222. Jolly, P. W.; Wilke, G. (1974). The organic chemistry of nickel. 1. New York: Academic Press. p. 16. ISBN 0-12-388401-2.
  223. 1 2 Jolly, P. W.; Wilke, G. (1974). The organic chemistry of nickel. 1. New York: Academic Press. p. 19. ISBN 0-12-388401-2.
  224. Bradley], D.C. (2001). Alkoxo and aryloxo derivatives of metals. San Diego: Academic Press. p. 97. ISBN 0-12-124140-8.
  225. Bradley, Don C.; Mehrotra, R. C.; Rothwell, Ian; Sin, A. (2001). Alkoxo and aryloxo derivatives of metals. San Diego: Academic Press. p. 100. ISBN 978-0-12-124140-7.
  226. Bradley, Don C.; Mehrotra, R. C.; Rothwell, Ian; Sin, A. (2001). Alkoxo and aryloxo derivatives of metals. San Diego: Academic Press. p. 11. ISBN 978-0-12-124140-7.
  227. Bradley, Don C.; Mehrotra, R. C.; Rothwell, Ian; Sin, A. (2001). Alkoxo and aryloxo derivatives of metals. San Diego: Academic Press. p. 19. ISBN 978-0-12-124140-7.
  228. Bradley, Don C.; Mehrotra, R. C.; Rothwell, Ian; Sin, A. (2001). Alkoxo and aryloxo derivatives of metals. San Diego: Academic Press. p. 68. ISBN 978-0-12-124140-7.
  229. Jolly, P. W.; Wilke, G. (1975). The organic chemistry of nickel. 2. New York: Academic Press. p. 3. ISBN 0-12-388402-0.
  230. Bradley, Don C.; Mehrotra, R. C.; Rothwell, Ian; Sin, A. (2001). Alkoxo and aryloxo derivatives of metals. San Diego: Academic Press. p. 208. ISBN 978-0-12-124140-7.
  231. Bradley, Don C.; Mehrotra, R. C.; Rothwell, Ian; Sin, A. (2001). Alkoxo and aryloxo derivatives of metals. San Diego: Academic Press. pp. 185–192. ISBN 978-0-12-124140-7.
  232. Bradley, Don C.; Mehrotra, R. C.; Rothwell, Ian; Sin, A. (2001). Alkoxo and aryloxo derivatives of metals. San Diego: Academic Press. pp. 215–216. ISBN 978-0-12-124140-7.
  233. Bradley, Don C.; Mehrotra, R. C.; Rothwell, Ian; Sin, A. (2001). Alkoxo and aryloxo derivatives of metals. San Diego: Academic Press. pp. 432–433. ISBN 978-0-12-124140-7.
  234. Bradley, Don C.; Mehrotra, R. C.; Rothwell, Ian; Sin, A. (2001). Alkoxo and aryloxo derivatives of metals. San Diego: Academic Press. pp. 619–621. ISBN 978-0-12-124140-7.
  235. 1 2 Jolly, P. W.; Wilke, G. (1974). The organic chemistry of nickel. 1. New York: Academic Press. pp. 18–19. ISBN 0-12-388401-2.
  236. Ciurli, Stefano; Ross, Paul K.; Scott, Michael J.; Yu, Shi Bao; Holm, R. H. (June 1992). "Synthetic nickel-containing heterometal cubane-type clusters with NiFe3Q4 cores (Q=sulfur, selenium)". Journal of the American Chemical Society. 114 (13): 5415–5423. doi:10.1021/ja00039a063.
  237. McConnachie, Jonathan M.; Ansari, Mohammad A.; Ibers, James A. (August 1991). "Synthesis and characterization of nickel chalcogenide [Ni4Se4(Se3)5(Se4)]4- anion, a Ni(IV) cubane species". Journal of the American Chemical Society. 113 (18): 7078–7079. doi:10.1021/ja00018a079.

Sources

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.