Nephroid

generation of a nephroid by a rolling circle

The nephroid (from the Greek ὁ νεφρός ho nephros) is a plane curve whose name means kidney-shaped (compare nephrology.) Although the term nephroid was used to describe other curves, it was applied to the curve in this article by Proctor in 1878.

A nephroid is an algebraic curve of degree 6. It can be generated by a rolling circle with radius on the outside of a fixed circle with radius . Hence a nephroid is an epicycloid.

Equations of a nephroid

Nephroid: definition

If the small circle has radius , the fixed circle has midpoint and radius , the rolling angle of the small circle is and point the starting point (s. picture) then one gets the

Inserting and into the equation

shows: this equation is an implicit representation of the curve.

proof of the parametric representation

The proof of the parametric representation is easily done by using complex numbers and their representation as complex plane. The movement of the small circle can be split into two rotations. In the complex plane a rotation of a point around point (origin) by an angle can be performed by the multiplication of point (complex number) by . Hence the

rotation around point by angle is ,
rotation around point by angle is .

A point of the nephroid is generated by the rotation of point by and the subsequent rotation with :

.

Herefrom one gets

(The formulae were used. See trigonometric functions.)

proof of the implicit representation

With

one gets

other orientaion

If the cusps are on the y-axis the parametric representation is

and the implicit one:

Metric properties

For the nephroid above the

The proofs of these statements use suitable formulae on curves (arc length, area and radius of curvature) and the parametric representation above

and their derivatives

proof for the arc length
.
proof for the area
.
proof for the radius of curvature
Nephroid as envelope of a pencil of circles

Nephroid as envelope of a pencil of circles

proof

Let be the circle with midpoint and radius . The diameter may lie on the x-axis (s. picture). The pencil of circles has equations:

The envelope condition is

One easily checks that the point of the nephroid is a solution of the system and hence a point of the envelope of the pencil of circles.

Nephroid as envelope of a pencil of lines

nephroid: tangents as chords of a circle, principle
nephroid: tangents as chords of a circle

Similar to the generation of a cardioid as envelope of a pencil of lines the following procedure holds:

  1. Draw a circle, divide its perimeter into equal spaced parts with points (s. picture) and number them consecutively.
  2. Draw the chords: . (i.e.: The second point is moved by threefold velocity.)
  3. The envelope of these chords is a nephroid.
proof

The following consideration uses trigonometric formulae for . In order to keep the calculations simple, the proof is given for the nephroid with cusps on the y-axis.

equation of the tangent
for the nephroid with parametric representation
:

Herefrom one determines the normal vector , at first.
The equation of the tangent is:

For one gets the cusps of the nephroid, where there is no tangent. For one can divide by and yields at last

equation of the chord
to the circle with midpoint and radius : The equation of the chord containing the two points is:

For the chord degenerates to a point. For one can divide by and gets the equation of the chord:

The two angles are defined differently ( is one half of the rolling angle, is the parameter of the circle, whose chords are determined), for one gets the same line. Hence any chord from the circle above is tangent to the nephroid and

nephroid as caustic of a circle: principle
nephroide as caustic of one half of a circle

Nephroid as caustic of one half of a circle

The considerations made in the previous section give a proof for the fact, that the caustic of one half of a circle is a nephroid.

proof

The circle may have the origin as midpoint (as in the previous section) and its radius is . The circle has the parametric representation

The tangent at the circle point has normal vector . The reflected ray has the normal vector (s. picture) and containing circle point . Hence the reflected ray is part of the line with equation

which is tangent to the nephroid of the previous section at point

(s. above).

The evolute and involute of a nephroid

nephroid and its evolute
magenta: point with osculating circle and center of curvature

evolute

The evolute of a curve is the locus of centers of curvature. In detail: For a curve with radius of curvature the evolute has the representation

with the suitably oriented unit normal.

For a nephroide one gets:

proof

The nephroid as shown in the picture has the parametric representation

the unit normal vector pointing to the center of curvature

(see section above)

and the radius of curvature (s. section on metric properties). Hence the evolute has the representation:

which is a nephroid half as large and rotated 90 degrees (s. picture and section equations above)

involute

Because the evolute of a nephroid is another nephroid, so the involute of the nephroid is also another nephroid. The original nephroid in the image is the involute of the smaller nephroid.

inversion (green) of a nephroid (red) across the blue circle

Inversion of a nephroid

The inversion

across the circle with midpoint and radius maps the nephroid with equation

onto the curve of degree 6 with equation

(s. picture) .

References

Lockwood, E. H., A Book of Curves, Cambridge University Press, 1961.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.