Near-ring

In mathematics, a near-ring (also near ring or nearring) is an algebraic structure similar to a ring but satisfying fewer axioms. Near-rings arise naturally from functions on groups.

Definition

A set N together with two binary operations + (called addition) and ⋅ (called multiplication) is called a (right) near-ring if:

A1: N is a group (not necessarily abelian) under addition;
A2: multiplication is associative (so N is a semigroup under multiplication); and
A3: multiplication on the right distributes over addition: for any x, y, z in N, it holds that (x + y)⋅z = (xz) + (yz).[1]

Similarly, it is possible to define a left near-ring by replacing the right distributive law A3 by the corresponding left distributive law. However, near-rings are almost always written as right near-rings.

An immediate consequence of this one-sided distributive law is that it is true that 0⋅x = 0 but it is not necessarily true that x⋅0 = 0 for any x in N. Another immediate consequence is that (x)⋅y = (xy) for any x, y in N, but it is not necessary that x⋅(y) = (xy). A near-ring is a ring (not necessarily with unity) if and only if addition is commutative and multiplication is distributive over addition on the left.

Mappings from a group to itself

Let G be a group, written additively but not necessarily abelian, and let M(G) be the set {f | f : GG} of all functions from G to G. An addition operation can be defined on M(G): given f, g in M(G), then the mapping f + g from G to G is given by (f + g)(x) = f(x) + g(x) for all x in G. Then (M(G),+) is also a group, which is abelian if and only if G is abelian. Taking the composition of mappings as the product ⋅, M(G) becomes a near-ring.

The 0 element of the near-ring M(G) is the zero map, i.e., the mapping which takes every element of G to the identity element of G. The additive inverse −f of f in M(G) coincides with the natural pointwise definition, that is, (−f)(x) = −(f(x)) for all x in G.

If G has at least 2 elements, M(G) is not a ring, even if G is abelian. (Consider a constant mapping g from G to a fixed element g ≠ 0 of G; then g⋅0 = g ≠ 0.) However, there is a subset E(G) of M(G) consisting of all group endomorphisms of G, that is, all maps f : GG such that f(x + y) = f(x) + f(y) for all x, y in G. If (G,+) is abelian, both near-ring operations on M(G) are closed on E(G), and (E(G),+,⋅) is a ring. If (G,+) is nonabelian, E(G) is generally not closed under the near-ring operations; but the closure of E(G) under the near-ring operations is a near-ring.

Many subsets of M(G) form interesting and useful near-rings. For example:[1]

Further examples occur if the group has further structure, for example:

Every near-ring is isomorphic to a subnear-ring of M(G) for some G.

Applications

Many applications involve the subclass of near-rings known as near fields; for these see the article on near fields.

There are various applications of proper near-rings, i.e., those that are neither rings nor near-fields.

The best known is to balanced incomplete block designs[2] using planar near-rings. These are a way to obtain difference families using the orbits of a fixed point free automorphism group of a group. Clay and others have extended these ideas to more general geometrical constructions[3]

See also

References

  1. 1 2 G. Pilz, (1982), "Near-Rings: What They Are and What They Are Good For" in Contemp. Math., 9, pp. 97–119. Amer. Math. Soc., Providence, R.I., 1981.
  2. G. Pilz " Near-rings", North-Holland, Amsterdam, second edition, (1983).
  3. J. Clay "Nearrings: Geneses and applications", Oxford, (1992).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.