Nanotube

A nanotube is a nanometer-scale tube-like structure. A nanotube is a kind of nanoparticle, and may be large enough to serve as a pipe through which other nanoparticles can be channeled, or, depending on the material, may be used as an electrical conductor or an electrical insulator.

The first nanotubes to be discovered were carbon nanotubes. In 1952 L. V. Radushkevich and V. M. Lukyanovich published clear images of 50 nanometer diameter tubes made of carbon in the Soviet Journal of Physical Chemistry.[1] This discovery was largely unnoticed, as the article was published in Russian, and Western scientists' access to Soviet press was limited during the Cold War.

Before they came to be known as carbon nanotubes, in 1976, Morinobu Endo of CNRS observed hollow tubes of rolled up graphite sheets synthesised by a chemical vapour-growth technique.[2] The first specimens observed would later come to be known as single-walled carbon nanotubes (SWNTs).[3] The three scientists have been the first ones to show images of a nanotube with a solitary graphene wall.[4]

Kinds of nanotubes

See also

References

  1. Радушкевич, Л. В. (1952). О Структуре Углерода, Образующегося При Термическом Разложении Окиси Углерода На Железном Контакте (PDF). Журнал Физической Химии (in Russian). 26: 88–95.
  2. Oberlin, A.; Endo, M.; Koyama, T. (1976). "Filamentous growth of carbon through benzene decomposition" (PDF). Journal of Crystal Growth. 32 (3): 335–349. Bibcode:1976JCrGr..32..335O. doi:10.1016/0022-0248(76)90115-9.
  3. Peter C. Eklund(Panel Chair) (2007). WTEC Panel Report on "INTERNATIONAL ASSESSMENT OF RESEARCH AND DEVELOPMENT OF CARBON NANOTUBE MANUFACTURING AND APPLICATIONS" FINAL REPORT (PDF) (Report). World Technology Evaluation Center(WTEC).
  4. Pacios Pujadó, Mercè (2012). Carbon Nanotubes as Platforms for Biosensors with Electrochemical and Electronic Transduction. Springer Heidelberg. pp. XX,208. ISBN 978-3-642-31421-6. ISSN 2190-5053. doi:10.1007/978-3-642-31421-6.
  5. Rubio, A.; et al. (1994). "Theory of Graphitic Boron Nitride Nanotubes". Physical Review B. 49 (7): 5081. Bibcode:1994PhRvB..49.5081R. doi:10.1103/PhysRevB.49.5081.
  6. Chopra, N. G.; et al. (1995). "Boron Nitride Nanotubes". Science. 269 (5226): 966–7. Bibcode:1995Sci...269..966C. PMID 17807732. doi:10.1126/science.269.5226.966.
  7. Feldkamp, U.; Niemeyer, C. M. (13 March 2006). "Rational design of DNA nanoarchitectures". Angewandte Chemie International Edition. 45 (12): 1856–1876. PMID 16470892. doi:10.1002/anie.200502358.
  8. Kiricsi, Imre; Fudala, Ágnes; Kónya, Zoltán; Hernádi, Klára; Lentz, Patrick; Nagy, János B (2000). "The advantages of ozone treatment in the preparation of tubular silica structures". Applied Catalysis A: General. 203: L1. doi:10.1016/S0926-860X(00)00563-9.
  9. Tenne R, Margulis L, Genut M, Hodes G (1992). "Polyhedral and cylindrical structures of tungsten disulphide". Nature. 360 (6403): 444–446. Bibcode:1992Natur.360..444T. doi:10.1038/360444a0.
  10. Mogilevsky, Gregory; Chen, Qiang; Kleinhammes, Alfred; Wu, Yue (2008). "The structure of multilayered titania nanotubes based on delaminated anatase". Chemical Physics Letters. 460 (4–6): 517–520. Bibcode:2008CPL...460..517M. doi:10.1016/j.cplett.2008.06.063.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.