Nagata–Smirnov metrization theorem

The Nagata–Smirnov metrization theorem in topology characterizes when a topological space is metrizable. The theorem states that a topological space is metrizable if and only if it is regular, Hausdorff and has a countably locally finite (i.e., σ-locally finite) basis.

A topological space X is called a regular space if every non-empty closed subset C of X and a point p not contained in C admit non-overlapping open neighborhoods. A collection in a space X is countably locally finite (or σ-locally finite) if it is the union of a countable family of locally finite collections of subsets of X.

Unlike Urysohn's metrization theorem, which provides only a sufficient condition for metrizability, this theorem provides both a necessary and sufficient condition for a topological space to be metrizable. The theorem is named after Junichi Nagata and Yuriĭ Mikhaĭlovich Smirnov.

See also

References


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.