Myristic acid
Names | |
---|---|
IUPAC name
Tetradecanoic acid | |
Other names
C14:0 (Lipid numbers) | |
Identifiers | |
3D model (JSmol) |
|
ChEBI | |
ChemSpider | |
ECHA InfoCard | 100.008.069 |
EC Number | 208-875-2 |
PubChem CID |
|
RTECS number | QH4375000 |
UNII | |
| |
| |
Properties | |
C14H28O2 | |
Molar mass | 228.38 g·mol−1 |
Density | 1.03 g/cm3 (−3 °C)[2] 0.99 g/cm3 (24 °C)[3] 0.8622 g/cm3 (54 °C)[4] |
Melting point | 54.4 °C (129.9 °F; 327.5 K) [5] |
Boiling point | 326.2 °C (619.2 °F; 599.3 K) at 760 mmHg 250 °C (482 °F; 523 K) at 100 mmHg[4] 218.3 °C (424.9 °F; 491.4 K) at 32 mmHg[3] |
13 mg/L (0 °C) 20 mg/L (20 °C) 24 mg/L (30 °C) 33 mg/L (60 °C)[6] | |
Solubility | Soluble in alcohol, acetates, C6H6, haloalkanes, phenyls, nitros[6] |
Solubility in acetone | 2.75 g/100 g (0 °C) 15.9 g/100 g (20 °C) 42.5 g/100 g (30 °C) 149 g/100 g (40 °C)[6] |
Solubility in benzene | 6.95 g/100 g (10 °C) 29.2 g/100 g (20 °C) 87.4 g/100 g (30 °C) 1.29 kg/100 g (50 °C)[6] |
Solubility in methanol | 2.8 g/100 g (0 °C) 17.3 g/100 g (20 °C) 75 g/100 g (30 °C) 2.67 kg/100 g (50 °C)[6] |
Solubility in ethyl acetate | 3.4 g/100 g (0 °C) 15.3 g/100 g (20 °C) 44.7 g/100 g (30 °C) 1.35 kg/100 g (40 °C)[6] |
Solubility in toluene | 0.6 g/100 g (−10 °C) 3.2 g/100 g (0 °C) 30.4 g/100 g (20 °C) 1.35 kg/100 g (50 °C)[6] |
log P | 6.1[4] |
Vapor pressure | 0.01 kPa (118 °C) 0.27 kPa (160 °C)[7] 1 kPa (186 °C)[4] |
-176·10−6 cm3/mol | |
Thermal conductivity | 0.159 W/m·K (70 °C) 0.151 W/m·K (100 °C) 0.138 W/m·K (160 °C)[8] |
Refractive index (nD) |
1.4723 (70 °C)[4] |
Viscosity | 7.2161 cP (60 °C) 3.2173 cP (100 °C) 0.8525 cP (200 °C) 0.3164 cP (300 °C)[9] |
Structure | |
Monoclinic (−3 °C)[2] | |
P21/c[2] | |
α = 90°, β = 94.432°, γ = 90° | |
Thermochemistry | |
432.01 J/mol·K[4][7] | |
Std enthalpy of formation (ΔfH |
−833.5 kJ/mol[4][7] |
Std enthalpy of combustion (ΔcH |
8675.9 kJ/mol[7] |
Hazards | |
GHS pictograms | [10] |
GHS signal word | Warning |
H315[10] | |
NFPA 704 | |
Flash point | > 110 °C (230 °F; 383 K) [11] |
Lethal dose or concentration (LD, LC): | |
LD50 (median dose) |
>10 g/kg (rats, oral)[11] |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). | |
verify (what is ?) | |
Infobox references | |
Myristic acid, (IUPAC systematic name: 1-tetradecanoic acid), is a common saturated fatty acid with the molecular formula CH3(CH2)12COOH. Its salts and esters are commonly referred to as myristates. It is named after the binomial name for nutmeg (Myristica fragrans), from which it was first isolated in 1841 by Lyon Playfair.[12]
Occurrence
Nutmeg butter has 75% trimyristin, the triglyceride of myristic acid. Besides nutmeg, myristic acid is also found in palm kernel oil, coconut oil, butter fat, 8-14% of bovine milk, and 8.6% of breast milk as well as being a minor component of many other animal fats.[5] It is also found in spermaceti, the crystallized fraction of oil from the sperm whale. It is also found in the rhizomes of the Iris, including Orris root.[13][14]
Uses
Myristic acid is commonly added co-translationally to the penultimate, nitrogen-terminus, glycine in receptor-associated kinases to confer the membrane localization of the enzyme. The myristic acid has a sufficiently high hydrophobicity to become incorporated into the fatty acyl core of the phospholipid bilayer of the plasma membrane of the eukaryotic cell. In this way, myristic acid acts as a lipid anchor in biomembranes.
Various "human epidemiological studies have shown that myristic acid and lauric acid were the saturated fatty acids most strongly related to the average serum cholesterol concentrations in humans"[15], meaning the were positively correlated with higher Cholesterol levels as well as raising Triglycerides in plasma by some 20% increasing the risk for heart disease although some research points to myristic acid's positive effects on HDL Cholesterol and hence improving HDL (good Cholesterol) to total cholesterol ratio.[16]
The ester isopropyl myristate is used in cosmetic and topical medicinal preparations where good absorption through the skin is desired.
Reduction of myristic acid yields myristyl aldehyde and myristyl alcohol.
See also
- 1-Tetradecanol - the corresponding alcohol
- Myristyl aldehyde - the corresponding aldehyde
References
- ↑ Merck Index, 11th Edition, 6246
- 1 2 3 4 Bond, Andrew D. (2003). "On the crystal structures and melting point alternation of the n-alkyl carboxylic acids" (PDF). http://www.rsc.org. Royal Society of Chemistry. Retrieved 2014-06-17. External link in
|website=
(help) - 1 2 G., Chuah T.; D., Rozanna; A., Salmiah; Y., Thomas Choong S.; M., Sa'ari (2006). "Fatty Acids used as Phase Change Materials (PCMs) for Thermal Energy Storage in Building Material Applications" (PDF). University Putra Malaysia. Retrieved 2014-06-17.
- 1 2 3 4 5 6 7 Lide, David R., ed. (2009). CRC Handbook of Chemistry and Physics (90th ed.). Boca Raton, Florida: CRC Press. ISBN 978-1-4200-9084-0.
- 1 2 "Lexicon of lipid nutrition (IUPAC Technical Report)". Pure and Applied Chemistry. 73 (4): 685–744. 2001. doi:10.1351/pac200173040685.
- 1 2 3 4 5 6 7 Seidell, Atherton; Linke, William F. (1940). Solubilities of Inorganic and Organic Compounds (3rd ed.). New York: D. Van Nostrand Company. pp. 762–763.
- 1 2 3 4 Tetradecanoic acid in Linstrom, P. J.; Mallard, W. G. (eds.) NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg MD. http://webbook.nist.gov (retrieved 2014-06-17)
- ↑ Vargaftik, Natan B.; et al. (1993). Handbook of Thermal Conductivity of Liquids and Gases (illustrated ed.). CRC Press. p. 305. ISBN 0-8493-9345-0.
- ↑ Yaws, Carl L. (2009). Transport Properties of Chemicals and Hydrocarbons. New York: William Andrew Inc. p. 177. ISBN 978-0-8155-2039-9.
- 1 2 Sigma-Aldrich Co., Myristic acid. Retrieved on 2014-06-17.
- 1 2 3 "MYRISTIC ACID". https://www.chemicalland21.com. AroKor Holdings Inc. Retrieved 2014-06-17. External link in
|website=
(help) - ↑ Playfair, Lyon (2009). "XX. On a new fat acid in the butter of nutmegs". Philosophical Magazine Series 3. 18 (115): 102–113. ISSN 1941-5966. doi:10.1080/14786444108650255.
- ↑ Council of Europe, August 2007 Natural Sources of Flavourings, Volume 2, p. 103, at Google Books
- ↑ John Charles Sawer Odorographia a natural history of raw materials and drugs used in the perfume industry intended to serve growers, manufacturers and consumers, p. 108, at Google Books
- ↑ German JB, Dillard CJ. Saturated fats: a perspective from lactation and milk composition. Lipids. 2010;45(10):915–923
- ↑ Kromhout D, Menotti A, Bloemberg B, Aravanis C, Blackburn H, Buzina R, Dontas AS, Fidanza F, Giampaoli S, Jansen A, Martti K, Martijn K, Aulikki N, Srecko N, Juha P, Maija P, Sven P, Leena R, Bozidar S, Hironori T. Dietary saturated and transfatty acids and cholesterol and 25-year mortality from coronary heart disease: the seven countries study. Prev Med. 1995;24:308–315. doi: 10.1006/pmed.1995.1049.
Wikimedia Commons has media related to Myristic acid. |