Myostatin-related muscle hypertrophy
Myostatin-related muscle hypertrophy (or myotonic hypertrophy) is a rare genetic condition characterized by reduced body fat and increased skeletal muscle size. Affected individuals have up to twice the usual amount of muscle mass in their bodies. They also tend to have increased muscle strength. Myostatin-related muscle hypertrophy is not known to cause many medical problems, and affected individuals are intellectually normal. The prevalence of this condition is unknown.
Mutations in the MSTN gene cause myostatin-related muscle hypertrophy. The MSTN gene provides instructions for making a protein called myostatin, which is active in muscles used for movement (skeletal muscles) both before and after birth. This protein normally restrains muscle growth, ensuring that muscles do not grow too large. Mutations that reduce the production of functional myostatin lead to an overgrowth of muscle tissue. Myostatin-related muscle hypertrophy has a pattern of inheritance known as incomplete autosomal dominance. People with a mutation in both copies of the MSTN gene in each cell (homozygotes) have significantly increased muscle mass and strength. People with a mutation in one copy of the MSTN gene in each cell (heterozygotes) also have increased muscle bulk, but to a lesser degree.
Researchers at Guangzhou Institutes of Biomedicine and Health in China have edited the genome of beagles to create double the amount of muscle.[1]
See also
References
- ↑ Scientists created the first genetically engineered dogs — and they are bizarrely muscular, Business Insider, 21 October 2015, Kevin Lori
External links
- Myostatin-Related Muscle Hypertrophy on NCBI
- Myostatin-related muscle hypertrophy at NIH Genetics Home Reference