Multivariate analysis

Multivariate analysis (MVA) is based on the statistical principle of multivariate statistics, which involves observation and analysis of more than one statistical outcome variable at a time. In design and analysis, the technique is used to perform trade studies across multiple dimensions while taking into account the effects of all variables on the responses of interest.

Uses for multivariate analysis include:

Multivariate analysis can be complicated by the desire to include physics-based analysis to calculate the effects of variables for a hierarchical "system-of-systems". Often, studies that wish to use multivariate analysis are stalled by the dimensionality of the problem. These concerns are often eased through the use of surrogate models, highly accurate approximations of the physics-based code. Since surrogate models take the form of an equation, they can be evaluated very quickly. This becomes an enabler for large-scale MVA studies: while a Monte Carlo simulation across the design space is difficult with physics-based codes, it becomes trivial when evaluating surrogate models, which often take the form of response-surface equations.

Factor analysis

Overview: Factor analysis is used to uncover the latent structure (dimensions) of a set of variables. It reduces attribute space from a larger number of variables to a smaller number of factors. Factor analysis originated a century ago with Charles Spearman's attempts to show that a wide variety of mental tests could be explained by a single underlying intelligence factor.

Applications:

Factor analysis is part of the general linear model (GLM) family of procedures and makes many of the same assumptions as multiple regression, but it uses multiple outcomes.

History

Anderson's 1958 textbook, An Introduction to Multivariate Analysis, educated a generation of theorists and applied statisticians; Anderson's book emphasizes hypothesis testing via likelihood ratio tests and the properties of power functions: Admissibility, unbiasedness and monotonicity.[2][3]

Commercial

See also

References

  1. Tahmasebi, Pejman; Sahimi, Muhammad (18 February 2015). "Geostatistical Simulation and Reconstruction of Porous Media by a Cross-Correlation Function and Integration of Hard and Soft Data" (PDF). Transport in Porous Media. 107 (3): 871–905. doi:10.1007/s11242-015-0471-3.
  2. Sen, Pranab Kumar; Anderson, T. W.; Arnold, S. F.; Eaton, M. L.; Giri, N. C.; Gnanadesikan, R.; Kendall, M. G.; Kshirsagar, A. M.; et al. (June 1986). "Review: Contemporary Textbooks on Multivariate Statistical Analysis: A Panoramic Appraisal and Critique". Journal of the American Statistical Association. 81 (394): 560–564. ISSN 0162-1459. JSTOR 2289251. doi:10.2307/2289251.(Pages 560–561)
  3. Schervish, Mark J. (November 1987). "A Review of Multivariate Analysis". Statistical Science. 2 (4): 396–413. ISSN 0883-4237. JSTOR 2245530. doi:10.1214/ss/1177013111.

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.