Monofluorophosphate
| |||
Names | |||
---|---|---|---|
IUPAC name
Fluoro-dioxido-oxo-λ5-phosphane | |||
Other names
Fluorophosphate, Phosphorofluoridat, Phosphorofluoridate | |||
Identifiers | |||
3D model (JSmol) |
|||
ChemSpider | |||
PubChem CID |
|||
UNII | |||
| |||
| |||
Properties | |||
PO3F2– | |||
Molar mass | 97.971 g/mol | ||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). | |||
Infobox references | |||
Monofluorophosphate is an anion with the formula PO3F2−, which is a phosphate group with one oxygen atom substituted with a fluoride atom. The charge of the ion is −2. The ion resembles sulfate in size, shape and charge, and can thus form compounds with the same structure as sulfates. These include Tutton's salts and langbeinites. The most well-known compound of monofluorophosphate is sodium monofluorophosphate, commonly used in toothpaste.
Related ions include difluorophosphate (PO
2F−
2) and hexafluorophosphate (PF−
6).[1] The related neutral molecule is phosphenic fluoride PO2F.
Organic derivatives can be highly toxic and include diisopropyl fluorophosphate.
Willy Lange from Berlin discovered sodium monofluorophosphate in 1929. He fruitlessly tried to make monofluorophosphoric acid. However, he did discover the highly toxic organic esters. Following this discovery various nerve gases like sarin were developed.
Fluorophosphate glasses are low melting point kinds of glass which are mixtures of fluoride and phosphate metal compounds. For example, the composition 10% SnO, 40% SnF2, 50% P2O5 forms a glass melting about 139 °C. PbO and PbF2 can lower the melting temperature, and increase water resistance.[2] These glasses can also be coloured by various other elements, and organic dyes.
Production
Hydrolysis of difluorophosphate with an alkali produces monofluorophosphate.
- PO
2F−
2 + 2 MOH → M2PO3F + H2O + F−
Industrial production is by reaction of a fluoride with a metaphosphate.
- MF + MPO3 → M2PO3F
Disodium hydrogen phosphate or tetrasodium pyrophosphate can react with hydrogen fluoride to form the sodium salt.
- Na2HPO4 or Na4P2O7
Phosphoric acid reacts with metal fluorides dissolved in molten urea to yield monofluorphosphates.[3]
Properties
Monofluorophosphates are stable to heat at room temperature, but will decompose when heated. For example, at 450 K silver monofluorophosphate gives off phosphoryl fluoride (POF3) as a gas leaving behind silver phosphate (Ag3PO4) and silver pyrophosphate (Ag4P2O7).[4]
Compounds
name | Formula | crystal form | Formula weight | density | ChemSpider | PubChem | CAS | |
---|---|---|---|---|---|---|---|---|
fluorophosphoric acid | H2PO3F | 99.986 | 22687 | 24267 | 13537-32-1 | |||
sodium monofluorophosphate | Na2PO3F | 22686 | 24266 | 10163-15-2 | ||||
sodium hydrogen monofluorophosphate | NaHPO3F | 121.968 | 19860808 | 20859-36-3 | ||||
sodium hydrogen monofluorophosphate dihydrate[5] | NaHPO3F.2H2O | monoclinic a=19.112Å, b=5.341Å, c=12.72Å, α=110.18°, V=1219.4. | 167.01 | 1.819 | ||||
potassium monofluorophosphate[6] | K2PO3F | orthorhombic a=7.554 Å, b=5.954 Å, c=10.171 Å, V=457Å3 Z=4 (at 20 °C) Z=4[7] | 176.17 | 2.57 | 20859-37-4 14306-73-1 | |||
K2PO3F•KF[8] | ||||||||
Potassium hydrogen monofluorophosphate | KHPO3F | monoclinic a=7.273; b=14.086; c=7.655 β=90.13 Z=8 V=784.233[9] | ||||||
Tripotassium hydrogen monofluorophosphate | K3H(PO3F)2 | monoclinic a=7.973; b=11.635; c=9.668 β=113.52 Z=4 V=822.35[9] | ||||||
rubidium monofluorophosphate[10] | Rb2PO3F | orthorhombic[11] a=7.8714 Å, b=6.1236 Å, c=10.5424 Å, V=508.15Å3 Z=4 (at 290K) Z=4 | 268.9 | 3.514 | ||||
Rubidium hydrogen monofluorophosphate | RbHPO3F | monoclinic a=7.465, b=15.551, c=7.563, β=105.38, Z=8, V=846.533[9] | ||||||
caesium monofluorophosphate | Cs2PO3F[10] | orthorhombic a=8.308 Å, b=6.3812 Å, c=11.036 Å, V=585.1Å3 Z=4 at 240K | 363.8 | 4.129 | ||||
caesium hydrogen monofluorophosphate | CsHPO3F | monoclinic a=14.478 Å, b=5.929 Å, c=5.413 Å, β=103.30°, V=452.2 Å3, Z = 4[12] | 231.89 | |||||
tricaesium diammonium hydrogen monofluorophosphate | Cs3(NH4)2H3(PO3F)4 | monoclinic a=20.619 Å, b=12.076 Å, c=15.856 Å, β=102.58°, V=3853 Å3, Z=8[12] | 829.72 | |||||
ammonium monofluorophosphate[6] | (NH4)2PO3F | orthorhombic a=6.29 Å, b=8.31 Å, c=12.70 Å, V=Å3 ß=99.6°, 4 per unit cell (Z)[13] | 134.05 | 1.633 | 8324505 | |||
ammonium monofluorophosphate hydrate[14] | (NH4)2PO3F•H2O | monoclinic a=7.9481 Å, b=11.3472 Å, c=6.0425 Å, V=Å3 ß=117.55°, 4 per unit cell monoclinic a=6.3042, b=8.2942 c=12.760 β=98.415° Z=4 V=657.416[15] |
152.05 | 1.536 | ||||
magnesium monofluorophosphate | MgPO3F | 122.28 | 23206079 | |||||
calcium monofluorophosphate dihydrate[16] | CaPO3F•2H2O | triclinic a=8.6497; b=6.4614; c=5.7353 α=119.003; β=110.853; γ=94.146 V=249.943 Z=2[15] | 2.313 | 8096036 | 9920401 | 37809-19-1 | ||
calcium monofluorophosphate hemihydrate[16] | CaPO3F.1/2H2O | |||||||
strontium monofluorophosphate | SrPO3F | monoclinic[17] | 185.59 | 18183579 | ||||
strontium monofluorphosphate hydrate[18] | SrPO3F·H2O | 185.59 | ||||||
barium monofluorophosphate | BaPO3F | monoclinic a = 11.3105 Å, b = 8.6934 Å, c = 9.2231 Å, β = 127.819° Z=4 orthorhombic[19] |
235.299 | 20836124 | 15600-53-0[20] | |||
copper monofluorophosphate[21] | CuPO3F•5H2O | 251.59 | ||||||
manganese(II) fluorophosphate dihydrate | MnPO3F•2H2O | triclinic Z = 2, a = 5.528, b = 5.636, c = 8.257 Å, α = 81.279, β = 75.156, γ = 71.722°[22] | 188.94 | |||||
basic copper potassium monofluorophosphate[21] | Cu2K(OH)(PO3F)2•5H2O | monoclinic a=9.094 Å, b=6.333 Å, c=7.75 Å, ß=117.55°, 2 per unit cell. | ||||||
diammonium diaquabis(monofluorophosphato) copper[23] | Cu(NH4)2(PO3F)2•2H2O | monoclinic a=13.454 Å, b=5.243 Å, c=7.518 Å, β=114.59° V=482.2 Z=2 | 331.6 | 2.28 | ||||
vanadium monofluorophosphate | VPO3F | 148.91 | 20452625 | |||||
silver monofluorophosphate[21] | Ag2PO3F | monoclinic a=9.245 Å, b=5.585 Å, c=14.784 Å, and β=90.178° Z=8[4] | 313.7 | 44135907 | ||||
trisilver ammonium monofluorophosphate | NH4Ag3(PO3F)2 | monoclinic a=30.895, b=5.5976 c=9.7522, β=90.027 V=1686.6 Z=8[24] | 537.59 | 4.234 | ||||
zinc monofluorophosphate[25] | ZnPO3F•2.5H2O | 163.35 | 20846323 | 68705-59-9 | ||||
Mercurous monofluorophosphate | Hg2PO3F | orthorhombic a=9.406 Å, b=12.145 Å, c=8.567 Å V=978.7 Z=8[26] | ||||||
tin monofluorophosphate | SnPO3F•2.5H2O | monoclinic | 216.68 | 44717639 | 52262-58-5 | |||
lead monofluorophosphate | PbPO3F | orthorhombic a=6.95 b=8.52 c=5.47[27] | 6.24 | |||||
Ammonium dipotassium hydrogen difluorophosphate[28] | NH4K2H(PO3F)2 | |||||||
ditheylammonium hydrogen monofluorophosphate[5] | [NH2(CH2CH3)2]HPO3F | orthorhombic a=12.892Å, b=9.530Å, c=13.555Å, α=90°, V=1665. | 173.12 | 1.381 | ||||
tetramethylammonium monofluorophosphate[5] | [N(CH3)4]2PO3F | 246.26 | ||||||
tetraethylammonium monofluorophosphate[5] | [N(CH2CH3)4]2PO3F | 358.47 | ||||||
tetrabutylammonium monofluorophosphate[5] | [N(CH2CH2CH2CH3)4]2PO3F | 582.90 | ||||||
piperazinium hydrogen monofluorophosphate[5] | [PipzH2]HPO3F | monoclinic a=6.020Å, b=13.012Å, c=7.285Å, α=95.09°, V=568.4 | 286.11 | 1.672 | ||||
glutamine monofluorophosphate monohydrate | C5H12N2O3PFO3 | 246.131 | 19989732 | |||||
glutamine monofluorophosphate disodium dichloride | C10H20Cl2FN4Na2O9P | 507.146 | 143826 | 164002 | ||||
Anilinium Hydrogen Monofluorophosphate[29] | C6H8N+.HPO3F− | monoclinic a=9.418 Å b=14.31 Å c=6.303 Å β=92.45° V=859 Z=4 brown | 193.12 | 1.51 | ||||
Tris(2-carbamoylguanidinium) hydrogen fluorophosphonate fluorophosphonate monohydrate[30] | 3C2H7N4O+·HFPO3−·FPO32−·H2O | triclinic a=6.7523,b = 8.2926,c = 9.7297, α= 100.630°,β=90.885°,γ=99.168, V = 528.05 | ||||||
bis(2-carbamoylguanidinium) fluorophosphonate dihydrate[31] | 2C2H7N4O+·FPO32−·2H2O |
Uses
Zinc monofluorophosphate can be used as a corrosion inhibitor for steel when salt is present.[32]
Glutamine monofluorophosphate has been used as a fluoride-bearing medicine.
References
- ↑ Cotton, F. Albert; Wilkinson, Geoffrey (1966). Advanced Inorganic Chemistry: A Comprehensive Text. John Wiley & Sons. p. 516.
- ↑ Shaw, Cathy M.; James E. Shelby (1988). "Effect of Lead Compounds on the Properties of Stannous Fluorophosphate Glasses". Journal of the American Ceramic Society. 71 (5): C–252–C–253. ISSN 0002-7820. doi:10.1111/j.1151-2916.1988.tb05071.x.
- ↑ Schülke, U.; R. Kayser (1991). "Herstellung von Fluorophosphaten, Difluorophosphaten, Fluorophsophonaten und Fluorophosphiten in fluoridhaltigen Harnstoffschmelzen". Zeitschrift für anorganische und allgemeine Chemie (in German). 600 (1): 221–226. ISSN 0044-2313. doi:10.1002/zaac.19916000130.
- 1 2 Weil, Matthias; Michael Puchberger, Ekkehard Füglein, Enrique J. Baran, Julia Vannahme, Hans J. Jakobsen, Jørgen Skibsted (2007). "Single-Crystal Growth and Characterization of Disilver(I) Monofluorophosphate(V), Ag2PO3F: Crystal Structure, Thermal Behavior, Vibrational Spectroscopy, and Solid-State 19F, 31P, and 109Ag MAS NMR Spectroscopy". Inorganic Chemistry. 46 (3): 801–808. ISSN 0020-1669. PMID 17257023. doi:10.1021/ic061765w.
- 1 2 3 4 5 6 Prescott, Hillary Anne (2002-08-01). "The crystal structures and thermal behavior of hydrogen monofluorophosphates and basic monofluorophosphates with alkali metal and N-containing cations". p. 32. Retrieved 1 November 2014.
- 1 2 Bhattacharjee, Manish; Mihir K. Chaudhuri (1987). "Direct synthesis of ammonium monofluorophosphate monohydrate, [NH4]2[PO3F].H2O and potassium monofluorophosphate, K2[PO3F]". Journal of the Chemical Society, Dalton Transactions (2): 477. ISSN 0300-9246. doi:10.1039/DT9870000477.
- ↑ Payen, Jean-Luc; Jean Durand, Louis Cot, Jean-Louis Galigne (1979). "Etude structurale du monofluorophosphate de potassium K2PO3F". Canadian Journal of Chemistry. 57 (8): 886–889. ISSN 0008-4042. doi:10.1139/v79-146.
- ↑ Grimmer, Arnd-Rüdiger; Dirk Müller, Jochen Neels; Neels, Jochen (1985). "Solid-state high-resolution NMR K2PO3F·KF". Journal of Fluorine Chemistry. 29 (1–2): 60. ISSN 0022-1139. doi:10.1016/S0022-1139(00)83295-9.
- 1 2 3 Prescott, Hillary A.; Troyanov, Sergej I.; Kemnitz, Erhard (1 January 2003). "The crystal structures of the potassium hydrogen monofluorophosphates, KHPO3F and K3[H(PO3F)2], and the α modification of RbHPO3F". Zeitschrift für Kristallographie - Crystalline Materials. 218 (9). doi:10.1524/zkri.218.9.604.20681.
- 1 2 Fábry, Jan; Michal Dušek, Karla Fejfarová, Radmila Krupková, Přemysl Vaněk, Ivana Císařová (2006). "Dirubidium fluorotrioxophosphate, Rb2PO3F, at 290 and 130 K, and dicaesium fluorotrioxophosphate, Cs2PO3F, at 240 and 100 K". Acta Crystallographica Section C. 62 (6): i49–i52. ISSN 0108-2701. doi:10.1107/s0108270106016350.
- ↑ "List of Substances". AtomWork. Retrieved 4 November 2014.
- 1 2 Kemnitz, Erhard; Prescott, Hillary A.; Troyanov, Sergey I. (1 January 2000). "The crystal structures of two hydrogen monofluorophosphates: CsHPO3F and Cs3(NH4)2(HPO3F)3(PO3F)". Zeitschrift für Kristallographie - Crystalline Materials. 215 (4). doi:10.1524/zkri.2000.215.4.240.
- ↑ Krupková, Radmila; Jan Fábry, Ivana Císařová, Přemysl Vaněk (2002). "Bis(ammonium) fluorophosphate at room temperature". Acta Crystallographica Section C. 58 (5): i66–i68. ISSN 0108-2701. doi:10.1107/S010827010200553X.
- ↑ Berndt, A. F.; J. M. Sylvester (1972). "The crystal structure of ammonium monofluorophosphate: (NH4)2PO3F.H2O". Acta Crystallographica Section B. 28 (7): 2191–2193. ISSN 0567-7408. doi:10.1107/S0567740872005771.
- 1 2 Perloff, A. (1 July 1972). "The crystal structures of hydrated calcium and ammonium monofluorophosphates: CaPO3F.2H2O and (NH4)2 PO3F.H2O". Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry. 28 (7): 2183–2191. doi:10.1107/S056774087200576X.
- 1 2 Rowley, H. H.; John E. Stuckey (1956). "Preparation and Properties of Calcium Monofluorophosphate Dihydrate". Journal of the American Chemical Society. 78 (17): 4262–4263. ISSN 0002-7863. doi:10.1021/ja01598a022.
- ↑ Rafiq, M.; Durand J.; Cot L (1979). "étude cristallographique des phosphites des métaux alcalinoterreux". Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, Ser C. 288 (15): 411–413.
- ↑ Menz, D.-H.; L. Kolditz, K. Heide, Ch. Kunert, Ch. Mensing (1986). "Zur Thermischen Zersetzung von SrPO3F·H2O". Zeitschrift für anorganische und allgemeine Chemie. 540 (9–10): 191–197. ISSN 0044-2313. doi:10.1002/zaac.19865400920.
- ↑ Stöger, Berthold; Matthias Weil, Jørgen Skibsted; Skibsted, Jørgen (2013). "The crystal structure of BaPO3F revisited – a combined X-ray diffraction and solid-state 19F, 31P MAS NMR study". Dalton Transactions. 42 (32): 11672. ISSN 1477-9226. doi:10.1039/C3DT50373A.
- ↑ "15600-53-0 - QNHNZAMKMLIQRR-UHFFFAOYSA-L - Barium fluorophosphate". ChemIDplus. Retrieved 4 November 2014.
- 1 2 3 Möwius, Frank; Burkhard Ziemer, Manfred Meisel, Herbert Grunze; Meisel, Manfred; Grunze, Herbert (1985). "On a new type of copper monofluorophosphate". Journal of Fluorine Chemistry. 29 (1–2): 68. ISSN 0022-1139. doi:10.1016/S0022-1139(00)83303-5.
- ↑ Weil, Matthias; Baran, Enrique J.; Kremer, Reinhard K.; Libowitzky, Eugen (February 2015). "Synthesis, Crystal Structure, and Properties of Mn(PO3F)(H 2O)2". Zeitschrift für anorganische und allgemeine Chemie. 641 (2): 184–191. doi:10.1002/zaac.201400587.
- ↑ Berraho, M.; A. Vegas, M. Martínez-Ripoll, M. Rafiq (1994). "A copper monofluorophosphate, Cu(H2O)2(NH4)2(PO3F)2". Acta Crystallographica Section C. 50 (5): 666–668. ISSN 0108-2701. doi:10.1107/S0108270193010789.
- ↑ Weil, Matthias (14 April 2007). "NH4Ag3(PO3F)2 , a layered monofluorophosphate(V) with seven different Ag sites". Acta Crystallographica Section C Crystal Structure Communications. 63 (5): i31–i33. doi:10.1107/S0108270107008967.
- ↑ Möwius, F.; M. Meisel, H. Kirk, W. Unger, D. Seepe, W. Metzner (1990). "Fluorophosphate—eine neue Wirkstoffgruppe für Holzschutzmittel". Holz als Roh- und Werkstoff (in German). 48 (9): 345–350. ISSN 0018-3768. doi:10.1007/BF02639896.
- ↑ Weil, Matthias; Puchberger, Michael; Baran, Enrique J. (December 2004). "Preparation and Characterization of Dimercury(I) Monofluorophosphate(V), Hg2PO3F: Crystal Structure, Thermal Behavior, Vibrational Spectra, and Solid-State 31P and 19F NMR Spectra". Inorganic Chemistry. 43 (26): 8330–8335. doi:10.1021/ic048741e.
- ↑ Walford, L. K. (1967). "Single-crystal and powder data for lead fluorophosphate". Acta Crystallographica. 22 (2): 324–324. ISSN 0365-110X. doi:10.1107/S0365110X67000593.
- ↑ Fábry, Jan; Krupková, Radmila; Císařová, Ivana (24 January 2003). "Ammonium dipotassium hydrogen difluorophosphate at room temperature". Acta Crystallographica Section E. 59 (2): i14–i16. doi:10.1107/S160053680300117X.
- ↑ Khaoulani Idrissi, A.; Rafiq, M.; Gougeon, P.; Guerin, R. (15 July 1995). "Anilinium Hydrogen Monofluorophosphate, C6H8N+.HPO3F−". Acta Crystallographica Section C Crystal Structure Communications. 51 (7): 1359–1361. doi:10.1107/S010827019401214X.
- ↑ Fábry, Jan; Michaela Fridrichová, Michal Dušek, Karla Fejfarová, Radmila Krupková (2011). "Tris(2-carbamoylguanidinium) hydrogen fluorophosphonate fluorophosphonate monohydrate". Acta Crystallographica Section E. 68 (1): o47–o48. ISSN 1600-5368. doi:10.1107/S1600536811051683.
- ↑ Fábry, Jan; Michaela Fridrichová, Michal Dušek, Karla Fejfarová, Radmila Krupková (2012). "Two polymorphs of bis(2-carbamoylguanidinium) fluorophosphonate dihydrate". Acta Crystallographica Section C. 68 (2): o71–o75. ISSN 0108-2701. doi:10.1107/S0108270111053133.
- ↑ Duprat, M.; A. Bonnel, F. Dabosi, J. Durand, L. Cot (1983). "Les monofluorophosphates de zinc et de potassium en tant qu'inhibiteurs de la corrosion d'un acier au carbone en solution de NaCl à 3%". Journal of Applied Electrochemistry. 13 (3): 317–323. ISSN 0021-891X. doi:10.1007/BF00941603.
Other reading
- Leblanc, Marc; Vincent Maisonneuve, Alain Tressaud; Tressaud, Alain (2014). "Crystal Chemistry and Selected Physical Properties of Inorganic Fluorides and Oxide-Fluorides". Chemical Reviews. 115: 140819071245006. ISSN 0009-2665. PMID 25135645. doi:10.1021/cr500173c.