MoRFs

Molecular Recognition Features (MoRFs) are small (10-70 residues) intrinsically disordered regions in proteins that undergo a disorder-to-order transition upon binding to their partners. MoRFs are implicated in protein-protein interactions, which serve as the initial step in molecular recognition. MoRFs are disordered prior binding to their partners, whereas they form a common 3D structure after interacting with their partners.[1][2]

Amino Acid composition

Their amino acid composition is very interesting. They look like disordered proteins, but they have some characteristics of ordered proteins.[2]

Categorization

MoRFs can be separated in 4 categories according to the shape they form once bound to their partners.[2]

The categories are:

MoRFs Predictors

MoRFPred[3] ANCHOR[4] MoRFchibi SYSTEM[5][6][7]

Databases

mpMoRFsDB[8]

Mutual Folding Induced by Binding (MFIB) database[9]

References

  1. Robin van der Lee, Marija Buljan, Benjamin Lang, Robert J. Weatheritt, Gary W. Daughdrill, A. Keith Dunker, Monika Fuxreiter, Julian Gough, Joerg Gsponer, David T. Jones, Philip M. Kim, Richard W. Kriwacki, Christopher J. Oldfield, Rohit V. Pappu, Peter Tompa, Vladimir N. Uversky, Peter E. Wright, and M. Madan Babu (2014). "Classification of intrinsically disordered regions and proteins". Chem Rev. 114 (13): 6589–631. PMC 4095912Freely accessible. PMID 24773235. doi:10.1021/cr400525m.
  2. 1 2 3 Amrita Mohan; Christopher J. Oldfield; Predrag Radivojac; Vladimir Vacic; Marc S. Cortese; A. Keith Dunker; Vladimir N. Uversky (2006). "Analysis of Molecular Recognition Features (MoRFs)". Journal of Molecular Biology. 362 (5): 1043–59. PMID 16935303. doi:10.1016/j.jmb.2006.07.087.
  3. Disfani FM, Hsu WL, Mizianty MJ, Oldfield CJ, Xue B, Dunker AK, Uversky VN, Kurgan L (2012). "MoRFpred, a computational tool for sequence-based prediction and characterization of short disorder-to-order transitioning binding regions in proteins". Bioinformatics. 28 (12): i75–83. PMC 3371841Freely accessible. PMID 22689782. doi:10.1093/bioinformatics/bts209.
  4. Bálint Mészáros; István Simon; Zsuzsanna Dosztányi (2009). "Prediction of protein binding regions in disordered proteins". PLoS Comput Biol. 5 (5): e1000376. Bibcode:2009PLSCB...5E0376M. PMC 2671142Freely accessible. PMID 19412530. doi:10.1371/journal.pcbi.1000376.
  5. Nawar Malhis & Joerg Gsponer (2015). "Computational Identification of MoRFs in Protein Sequences". Bioinformatics. 31 (11): 1738–44. PMC 4443681Freely accessible. PMID 25637562. doi:10.1093/bioinformatics/btv060.
  6. Nawar Malhis; Eric TC Wong; Roy Nassar; Joerg Gsponer (2015). "Computational Identification of MoRFs in Protein Sequences Using Hierarchical Application of Bayes Rule". PLOS ONE. 10 (10): e0141603. Bibcode:2015PLoSO..1041603M. PMC 4627796Freely accessible. PMID 26517836. doi:10.1371/journal.pone.0141603.
  7. Nawar Malhis; Matthew Jacobson; Jörg Gsponer (2016). "MoRFchibi SYSTEM: Software Tools for the Identification of MoRFs in Protein sequences". Nucleic Acids Research. 44: gkw409. PMID 27174932. doi:10.1093/nar/gkw409.
  8. Foivos Gypas, Georgios N Tsaousis and Stavros J Hamodrakas (2013). "mpMoRFsDB: A database of Molecular Recognition Features in Membrane Proteins". Bioinformatics. 29 (19): 2517–8. PMID 23894139. doi:10.1093/bioinformatics/btt427.
  9. Erzsébet Fichó, István Reményi, István Simon and Bálint Mészáros (2017). "MFIB: a repository of protein complexes with mutual folding induced by binding". Bioinformatics. doi:10.1093/bioinformatics/btx486.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.