Mian–Chowla sequence

In mathematics, the Mian–Chowla sequence is an integer sequence defined recursively in the following way. The sequence starts with

Then for , is the smallest integer such that the pairwise sum

is distinct, for all and less than or equal to .

Properties

Initially, with , there is only one pairwise sum, 1 + 1 = 2. The next term in the sequence, , is 2 since the pairwise sums then are 2, 3 and 4, i.e., they are distinct. Then, can't be 3 because there would be the non-distinct pairwise sums 1 + 3 = 2 + 2 = 4. We find then that , with the pairwise sums being 2, 3, 4, 5, 6 and 8. The sequence thus begins

1, 2, 4, 8, 13, 21, 31, 45, 66, 81, 97, 123, 148, 182, 204, 252, 290, 361, 401, 475, ... (sequence A005282 in the OEIS).

Similar sequences

If we define , the resulting sequence is the same except each term is one less (that is, 0, 1, 3, 7, 12, 20, 30, 44, 65, 80, 96, ... A025582).

History

The sequence was invented by Abdul Majid Mian and Sarvadaman Chowla.

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.