Mehler–Fock transform
In mathematics, the Mehler–Fock transform is an integral transform introduced by Mehler (1881) and rediscovered by Fock (1943).
It is given by
where P is a Legendre function of the first kind.
Under appropriate conditions, the following inversion formula holds:
References
- Brychkov, Yu.A.; Prudnikov, A.P. (2001) [1994], "m/m063340", in Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4
- Fock, V. A. (1943), "On the representation of an arbitrary function by an integral involving Legendre's functions with a complex index", C. R. (Doklady) Acad. Sci. URSS (N.S.), 39: 253–256, MR 0009665
- Mehler, F. G. (1881), "Ueber eine mit den Kugel- und Cylinderfunctionen verwandte Function und ihre Anwendung in der Theorie der Elektricitätsvertheilung", Mathematische Annalen (in German), Springer Berlin / Heidelberg, 18 (2): 161–194, ISSN 0025-5831, doi:10.1007/BF01445847
- Yakubovich, S. B. (2001) [1994], "m/m120190", in Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4
This article is issued from
Wikipedia.
The text is licensed under Creative Commons - Attribution - Sharealike.
Additional terms may apply for the media files.