Malnormal subgroup

In mathematics, in the field of group theory, a subgroup of a group is termed malnormal if for any in but not in , and intersect in the identity element.[1]

Some facts about malnormality:

When G is finite, a malnormal subgroup H distinct from 1 and G is called a "Frobenius complement".[4] The set N of elements of G which are, either equal to 1, or non-conjugate to any element of H, is a normal subgroup of G, called the "Frobenius kernel", and G is the semi-direct product of H and N (Frobenius' theorem).[5]

References

  1. Lyndon, Roger C.; Schupp, Paul E. (2001), Combinatorial Group Theory, Springer, p. 203, ISBN 9783540411581.
  2. Gildenhuys, D.; Kharlampovich, O.; Myasnikov, A. (1995), "CSA-groups and separated free constructions", Bulletin of the Australian Mathematical Society, 52 (1): 63–84, MR 1344261, arXiv:math/9605203Freely accessible, doi:10.1017/S0004972700014453.
  3. Karrass, A.; Solitar, D. (1971), "The free product of two groups with a malnormal amalgamated subgroup", Canadian Journal of Mathematics, 23: 933–959, MR 0314992, doi:10.4153/cjm-1971-102-8.
  4. 1 2 de la Harpe, Pierre; Weber, Claude (2011), Malnormal subgroups and Frobenius groups: basics and examples, arXiv:1104.3065Freely accessible.
  5. Feit, Walter (1967), Characters of finite groups, W. A. Benjamin, Inc., New York-Amsterdam, pp. 133–139, MR 0219636.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.