Polymer science

Polymer science or macromolecular science is a subfield of materials science concerned with polymers, primarily synthetic polymers such as plastics and elastomers. The field of polymer science includes researchers in multiple disciplines including chemistry, physics, and engineering.

Subdisciplines

This science comprises three main sub-disciplines:

History of polymer science

The earliest known work with polymers was the rubber industry in pre-Columbian Mexico. The mesoamericans knew how to combine latex of the rubber tree with the juice of the morning glory plant in different proportions to get rubber with different properties for different products, such as bouncing balls, sandals, and rubber bands.[1]

The first modern example of polymer science is Henri Braconnot's work in the 1830s. Braconnot, along with Christian Schönbein and others, developed derivatives of the natural polymer cellulose, producing new, semi-synthetic materials, such as celluloid and cellulose acetate. The term "polymer" was coined in 1833 by Jöns Jakob Berzelius, though Berzelius did little that would be considered polymer science in the modern sense. In the 1840s, Friedrich Ludersdorf and Nathaniel Hayward independently discovered that adding sulfur to raw natural rubber (vulcanizing natural rubber with sulfur and heat. Thomas Hancock had received a patent for the same process in the UK the year before. This process strengthened natural rubber and prevented it from melting with heat without losing flexibility. This made practical products such as waterproofed articles possible. It also facilitated practical manufacture of such rubberized materials. Vulcanized rubber represents the first commercially successful product of polymer research. In 1884 Hilaire de Chardonnet started the first artificial fiber plant based on regenerated cellulose, or viscose rayon, as a substitute for silk, but it was very flammable.[2] In 1907 Leo Baekeland invented the first synthetic polymer, a thermosetting phenolformaldehyde resin called Bakelite.[3]

Despite significant advances in polymer synthesis, the molecular nature of polymers was not understood until the work of Hermann Staudinger in 1922.[4] Prior to Staudinger's work, polymers were understood in terms of the association theory or aggregate theory, which originated with Thomas Graham in 1861. Graham proposed that cellulose and other polymers were colloids, aggregates of molecules having small molecular mass connected by an unknown intermolecular force. Hermann Staudinger was the first to propose that polymers consisted of long chains of atoms held together by covalent bonds. It took over a decade for Staudinger's work to gain wide acceptance in the scientific community, work for which he was awarded the Nobel Prize in 1953.

The World War II era marked the emergence of a strong commercial polymer industry. The limited or restricted supply of natural materials such as silk and rubber necessitated the increased production of synthetic substitutes, such as nylon[5] and synthetic rubber.[6] In the intervening years, the development of advanced polymers such as Kevlar and Teflon have continued to fuel a strong and growing polymer industry.

The growth in industrial applications was mirrored by the establishment of strong academic programs and research institute. In 1946, Herman Mark established the Polymer Research Institute at Brooklyn Polytechnic, the first research facility in the United States dedicated to polymer research. Mark is also recognized as a pioneer in establishing curriculum and pedagogy for the field of polymer science.[7] In 1950, the POLY division of the American Chemical Society was formed, and has since grown to the second-largest division in this association with nearly 8,000 members. Fred W. Billmeyer, Jr., a Professor of Analytical Chemistry had once said that "although the scarcity of education in polymer science is slowly diminishing but it is still evident in many areas. What is most unfortunate is that it appears to exist, not because of a lack of awareness but, rather, a lack of interest."[8]

2005 (Chemistry) Robert Grubbs, Richard Schrock, Yves Chauvin for olefin metathesis.[9]

2002 (Chemistry) John Bennett Fenn, Koichi Tanaka, and Kurt Wüthrich for the development of methods for identification and structure analyses of biological macromolecules.[10]

2000 (Chemistry) Alan G. MacDiarmid, Alan J. Heeger, and Hideki Shirakawa for work on conductive polymers, contributing to the advent of molecular electronics.[11]

1991 (Physics) Pierre-Gilles de Gennes for developing a generalized theory of phase transitions with particular applications to describing ordering and phase transitions in polymers.[12]

1974 (Chemistry) Paul J. Flory for contributions to theoretical polymer chemistry.[13]

1963 (Chemistry) Giulio Natta and Karl Ziegler for contributions in polymer synthesis. (Ziegler-Natta catalysis).[14]

1953 (Chemistry) Hermann Staudinger for contributions to the understanding of macromolecular chemistry.[15]

References

  1. "A few ancient Mesoamerican rubber balls have been found, the oldest dating back to 1600 B.C."
  2. "Types of Polymer". Plastics Historical Society. Archived from the original on 2009-04-02.
  3. "Bakelite: The World's First Synthetic Plastic". National Historic Chemical Landmarks. American Chemical Society. Retrieved June 25, 2012.
  4. "Hermann Staudinger: Foundation of Polymer Science". National Historic Chemical Landmarks. American Chemical Society. Retrieved June 25, 2012.
  5. "Foundation of Polymer Science: Wallace Carothers and the Development of Nylon". National Historic Chemical Landmarks. American Chemical Society. Retrieved June 25, 2012.
  6. "U.S. Synthetic Rubber Program". National Historic Chemical Landmarks. American Chemical Society. Retrieved June 25, 2012.
  7. "Herman Mark and the Polymer Research Institute". National Historic Chemical Landmarks. American Chemical Society. Retrieved June 25, 2012.
  8. Fred W. Billmeyer, Jr., (1984), Third Edition, Textbook of Polymer Science, A Wiley-Interscience Publication. preface to the second edition
  9. "Press Release, 5 October 2005"The Nobel Prize in Chemistry 2005. NobelPrize.org. Retrieved 12 April 2016.
  10. "Press Release: The Nobel Prize in Chemistry 2002". The Nobel Foundation. October 9, 2002. Retrieved April 2, 2011.
  11. "The Nobel Prize in Chemistry 2000: Alan Heeger, Alan G. MacDiarmid, Hideki Shirakawa".
  12. "Press Release: The 1991 Nobel Prize in Physics". Nobelprize.org. Nobel Media AB 2014. Web. 5 May 2017. <https://www.nobelprize.org/nobel_prizes/physics/laureates/1991/press.html>
  13. "Press Release: The 1974 Nobel Prize in Chemistry". Nobelprize.org. Nobel Media AB 2014. Web. 5 May 2017. <https://www.nobelprize.org/nobel_prizes/chemistry/laureates/1974/press.html>
  14. "The Nobel Prize in Chemistry 1963". Nobelprize.org. Nobel Media AB 2014. Web. 5 May 2017. <https://www.nobelprize.org/nobel_prizes/chemistry/laureates/1963/>
  15. "The Nobel Prize in Chemistry 1953". Nobelprize.org. Nobel Media AB 2014. Web. 5 May 2017. <https://www.nobelprize.org/nobel_prizes/chemistry/laureates/1953/index.html>
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.