MLST8
Target of rapamycin complex subunit LST8, also known as mammalian lethal with SEC13 protein 8 (mLST8) or TORC subunit LST8 or G protein beta subunit-like (GβL or Gable), is a protein that in humans is encoded by the MLST8 (MTOR associated protein, LST8 homolog) gene.[5] It is a subunit of both mTORC1 and mTORC2, complexes that regulate cell growth and survival in response to nutrient, energy, redox, and hormonal signals.[6] It is upregulated in several human colon and prostate cancer cell lines and tissues. Knockdown of mLST8 prevented mTORC formation and inhibited tumor growth and invasiveness.[7]
References
- 1 2 3 GRCh38: Ensembl release 89: ENSG00000167965 - Ensembl, May 2017
- 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000024142 - Ensembl, May 2017
- ↑ "Human PubMed Reference:".
- ↑ "Mouse PubMed Reference:".
- ↑ "Entrez Gene: MTOR associated protein".
- ↑ "UniProtKB – Q9BVC4 (LST8_HUMAN)".
- ↑ Kakumoto K, Ikeda J, Okada M, Morii E, Oneyama C (23 Apr 2015). "mLST8 Promotes mTOR-Mediated Tumor Progression". PLOS ONE. doi:10.1371/journal.pone.0119015.
Further reading
- Ali SM, Sabatini DM (2005). "Structure of S6 kinase 1 determines whether raptor-mTOR or rictor-mTOR phosphorylates its hydrophobic motif site.". J. Biol. Chem. 280 (20): 19445–8. PMID 15809305. doi:10.1074/jbc.C500125200.
- Rodgers BD, Levine MA, Bernier M, Montrose-Rafizadeh C (2001). "Insulin regulation of a novel WD-40 repeat protein in adipocytes.". J. Endocrinol. 168 (2): 325–32. PMID 11182770. doi:10.1677/joe.0.1680325.
- Long X, Lin Y, Ortiz-Vega S, et al. (2005). "Rheb binds and regulates the mTOR kinase.". Curr. Biol. 15 (8): 702–13. PMID 15854902. doi:10.1016/j.cub.2005.02.053.
- Kaizuka T, Hara T, Oshiro N, et al. (2010). "Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly.". J. Biol. Chem. 285 (26): 20109–16. PMC 2888423 . PMID 20427287. doi:10.1074/jbc.M110.121699.
- Loewith R, Jacinto E, Wullschleger S, et al. (2002). "Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control.". Mol. Cell. 10 (3): 457–68. PMID 12408816. doi:10.1016/S1097-2765(02)00636-6.
- Kimura K, Wakamatsu A, Suzuki Y, et al. (2006). "Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes.". Genome Res. 16 (1): 55–65. PMC 1356129 . PMID 16344560. doi:10.1101/gr.4039406.
- Sarbassov DD, Sabatini DM (2005). "Redox regulation of the nutrient-sensitive raptor-mTOR pathway and complex.". J. Biol. Chem. 280 (47): 39505–9. PMID 16183647. doi:10.1074/jbc.M506096200.
- Oshiro N, Yoshino K, Hidayat S, et al. (2004). "Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function.". Genes Cells. 9 (4): 359–66. PMID 15066126. doi:10.1111/j.1356-9597.2004.00727.x.
- Inoki K, Ouyang H, Li Y, Guan KL (2005). "Signaling by target of rapamycin proteins in cell growth control.". Microbiol. Mol. Biol. Rev. 69 (1): 79–100. PMC 1082789 . PMID 15755954. doi:10.1128/MMBR.69.1.79-100.2005.
- Behrends C, Sowa ME, Gygi SP, Harper JW (2010). "Network organization of the human autophagy system.". Nature. 466 (7302): 68–76. PMC 2901998 . PMID 20562859. doi:10.1038/nature09204.
- Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs.". Nat. Genet. 36 (1): 40–5. PMID 14702039. doi:10.1038/ng1285.
- Kawai S, Enzan H, Hayashi Y, et al. (2003). "Vinculin: a novel marker for quiescent and activated hepatic stellate cells in human and rat livers.". Virchows Arch. 443 (1): 78–86. PMID 12719976. doi:10.1007/s00428-003-0804-4.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2002). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. PMC 139241 . PMID 12477932. doi:10.1073/pnas.242603899.
- Kim DH, Sarbassov DD, Ali SM, et al. (2003). "GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR.". Mol. Cell. 11 (4): 895–904. PMID 12718876. doi:10.1016/S1097-2765(03)00114-X.
- Jacinto E, Loewith R, Schmidt A, et al. (2004). "Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive.". Nat. Cell Biol. 6 (11): 1122–8. PMID 15467718. doi:10.1038/ncb1183.
- Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005). "Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex.". Science. 307 (5712): 1098–101. PMID 15718470. doi:10.1126/science.1106148.
This article is issued from
Wikipedia.
The text is licensed under Creative Commons - Attribution - Sharealike.
Additional terms may apply for the media files.