Lusin's theorem

In the mathematical field of real analysis, Lusin's theorem (or Luzin's theorem, named for Nikolai Luzin) states that every measurable function is a continuous function on nearly all its domain. In the informal formulation of J. E. Littlewood, "every measurable function is nearly continuous".

Classical statement

For an interval [a, b], let

be a measurable function. Then, for every ε > 0, there exists a compact E  [a, b] such that f restricted to E is continuous and

Note that E inherits the subspace topology from [a, b]; continuity of f restricted to E is defined using this topology.

General form

Let be a Radon measure space and Y be a second-countable topological space, let

be a measurable function. Given ε > 0, for every of finite measure there is a closed set E with µ(A \ E) < ε such that f restricted to E is continuous. If A is locally compact, we can choose E to be compact and even find a continuous function with compact support that coincides with f on E and such that .

Informally, measurable functions into spaces with countable base can be approximated by continuous functions on arbitrarily large portion of their domain.

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.