Extracorporeal shock wave lithotripsy

Extracorporeal shock wave lithotripsy

Some of the passed fragments of a 1-cm calcium oxalate stone that was smashed using lithotripsy.
ICD-9-CM 98.5
MeSH D008096

Extracorporeal shock wave lithotripsy (ESWL) is a non-invasive treatment of kidney stones[1] (urinary calculosis) and biliary calculi (stones in the gallbladder or in the liver) using an acoustic pulse. It is also reported to be used for salivary stones[2] and pancreatic stones.[3]

History

Beginning in 1969 and funded by the German Ministry of Defense, Dornier began a study of the effects of shock waves on tissue.In 1972, on the basis of preliminary studies performed by Dornier Medical Systems, an agreement was reached with Egbert Schmiedt, director of the urologic clinic at the University of Munich. The development of the Dornier lithotripter progressed through several prototypes, ultimately culminating in February 1980 with the first treatment of a human by SWL.The production and distribution of the Dornier HM3 lithotripter began in late 1983, and SWL was approved by the U.S. Food and Drug Administration in 1984.[4]

Non-invasive treatment

The lithotriptor attempts to break up the stone with minimal collateral damage by using an externally applied, focused, high-intensity acoustic pulse. The patient is usually sedated or anesthetized for the procedure in order to help them remain still and reduce possible discomfort.[5] The patient lies down in the apparatus' bed, with the back supported by a water-filled coupling device placed at the level of kidneys. A fluoroscopic x-ray imaging system or an ultrasound imaging system is used to locate the stone and aim the treatment. The first generation lithotriptor known as the Dornier HM3 (Human Model 3), has a half ellipsoid-shaped piece that opens toward the patient. The acoustic pulse is generated at the ellipsoidal focal point that is furthest from the patient and the stone positioned at the opposite focal point receives the focused shock wave. The treatment usually starts at the equipment's lowest power level, with a long gap between pulses, in order to accustom the patient to the sensation. The length of gap between pulses is also controlled to allow cavitation bubbles to disperse minimizing tissue damage. Second and later generation machines use an acoustic lens to focus the shock wave. This functions much like an optical lens, focusing the shock wave at the desired loci. The frequency of pulses are currently left at a slow rate for more effective comminution of the stone and to minimize morbidity while the power levels are then gradually increased, so as to break up the stone. The final power level usually depends on the patient's pain threshold and the observed success of stone breakage. If the stone is positioned near a bone (usually a rib in the case of kidney stones), this treatment may be more uncomfortable because the shock waves can cause a mild resonance in the bone which can be felt by the patient. The sensation of the treatment is likened to an elastic band twanging off the skin. Alternatively, the patient may be sedated during the procedure. This allows the power levels to be brought up more quickly and a much higher pulse frequency, often up to 120 shocks per minute (although this rate of treatment has been largely abandoned due to an association with ancillary morbidity).

The successive shock wave pressure pulses result in direct shearing forces, as well as cavitation bubbles surrounding the stone, which fragment the stones into smaller pieces that then can easily pass through the ureters or the cystic duct. The process takes about an hour. A ureteral stent (a kind of expandable hollow tube) may be used at the discretion of the urologist. The stent allows for easier passage of the stone by relieving obstruction and through passive dilatation of the ureter.

Extracorporeal lithotripsy works best with stones between 4 mm and 20 mm (0.4 cm and 2.0 cm) in diameter that are still located in the kidney.[6] ESWL can be used to break up stones located in ureters as well, but with a lesser rate of success.

The patients undergoing this procedure can, in some cases, see for themselves the progress of their treatment. If allowed to view the ultrasound or x-ray monitor, they may be able to see their stones change from a distinct bright point (or dark spot depending on whether the fluoro unit is set up in native or bones white) to a fuzzy cloud as the stone is disintegrated into a fine powder.

ESWL is the least invasive of the commonplace modalities for definitive stone treatment, but provides a lower stone-free rate than other more invasive treatment methods, such as ureteroscopic manipulation with laser lithotripsy or percutaneous nephrolithotomy (PCNL) or retrogade intrarenal surgery (RIRS).[7] The passage of stone fragments may take a few days or a week and may cause mild to extreme pain depending on the patient and the success of the operation. Patients may be instructed to drink as much water as practical during this time. Patients are also advised to void through a stone screen in order to capture stone fragments for analysis.

ESWL is not without risks. The shock waves themselves, as well as cavitation bubbles formed by the agitation of the urine medium, can lead to capillary damage, renal parenchymal or subcapsular hemorrhage. This has been associated with long-term consequences such as renal failure and hypertension. Overall complication rates of ESWL range from .03%–20%. Occasionally, patients have experienced infections and thus are advised by medical professionals to obtain medical help as soon as possible if they develop a fever.

References

  1. Srisubat, A; Potisat1, S; Lojanapiwat, B; Setthawong, V; Laopaiboon, M (24 November 2014). "Extracorporeal shock wave lithotripsy (ESWL) versus percutaneous nephrolithotomy (PCNL) or retrograde intrarenal surgery (RIRS) for kidney stones". The Cochrane Library. 11: CD007044. PMID 25418417. doi:10.1002/14651858.CD007044.pub3. Retrieved 2 April 2015.
  2. "Salivary duct stones: MedlinePlus Medical Encyclopedia".
  3. "Pancreatic stone and treatment using ERCP and ESWL procedures: a case study and review - New Zealand Medical Journal".
  4. "Gastroenterology and Urology Devices; Reclassification of the Extracorporeal Shock Wave Lithotripter AGENCY: Food and Drug Administration, HHS ACTION: Proposed rule". Federal Register (US Government). February 8, 1999. Retrieved February 6, 2017. The safety and effectiveness of the extracorporeal shock wave lithotripter in the fragmentation of kidney and ureteral calculi has become well-established since approval of the first device in 1984; (2) extracorporeal shock wave lithotripsy is effective in treating most kidney and ureteral calculi, with a typical stone-free rate of 75 percent; and (3) the rates of serious complications from extracorporeal shock wave lithotripsy are low, and can be effectively minimized
  5. "Lithotrypsy" National Kidney Foundation, Accessed February 6, 2017
  6. "Extracorporeal Shock Wave Lithotripsy (ESWL) for Kidney Stones". WebMD. November 20, 2015. Retrieved February 6, 2017.
  7. Comparing ureteroscopy, shockwave lithotripsy, and percutaneous nephrolithotripsy" Health Guide - New York Times August 30, 2013, retrieved February 6, 2017

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.