One-sided limit

In calculus, a one-sided limit is either of the two limits of a function f(x) of a real variable x as x approaches a specified point either from below or from above. One should write either:

or or or

for the limit as x decreases in value approaching a (x approaches a "from the right" or "from above"), and similarly

or or or

for the limit as x increases in value approaching a (x approaches a "from the left" or "from below")

The two one-sided limits exist and are equal if the limit of f(x) as x approaches a exists. In some cases in which the limit

does not exist, the two one-sided limits nonetheless exist. Consequently, the limit as x approaches a is sometimes called a "two-sided limit". In some cases one of the two one-sided limits exists and the other does not, and in some cases neither exists.

The right-sided limit can be rigorously defined as:

Similarly, the left-sided limit can be rigorously defined as:

Where I represents some interval that is within the domain of f

Examples

One example of a function with different one-sided limits is the following:

whereas

Relation to topological definition of limit

The one-sided limit to a point p corresponds to the general definition of limit, with the domain of the function restricted to one side, by either allowing that the function domain is a subset of the topological space, or by considering a one-sided subspace, including p. Alternatively, one may consider the domain with a half-open interval topology.

Abel's theorem

A noteworthy theorem treating one-sided limits of certain power series at the boundaries of their intervals of convergence is Abel's theorem.

See also

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.