Light-oxygen-voltage-sensing domain

Light-oxygen-voltage-sensing (LOV) domains are protein sensors used by a large variety of higher plants, microalgae, fungi and bacteria to sense environmental conditions. In higher plants, they are used to control phototropism, chloroplast relocation, and stomatal opening, whereas in fungal organisms, they are used for adjusting the circadian temporal organization of the cells to the daily and seasonal periods.[1]

Description

Common to all LOV proteins is the blue-light sensitive flavin chromophore, which in the signaling state is covalently linked to the protein core via an adjacent cysteine residue.[2][3] LOV domains are e.g. encountered in phototropins, which are blue-light-sensitive protein complexes regulating a great diversity of biological processes in higher plants as well as in micro-algae.[4][5][6][7] Phototropins are composed of two LOV domains, each containing a non-covalently bound flavin mononucleotide (FMN) chromophore in its dark-state form, and a C-terminal Ser-Thr kinase. Upon blue-light absorption, a covalent bond between the FMN chromophore and an adjacent reactive cysteine residue of the apo-protein is formed in the LOV2 domain. This subsequently mediates the activation of the kinase, which induces a signal in the organism through phototropin autophosphorylation.[8] While the photochemical reactivity of the LOV2 domain has been found to be essential for the activation of the kinase, the in vivo functionality of the LOV1 domain within the protein complex still remains unclear.[9] In case of the fungus Neurospora crassa, the circadian clock is controlled by two light-sensitive domains, known as the white-collar-complex (WCC) and the LOV domain vivid (VVD-LOV).[10][11][12] WCC is primarily responsible for the light-induced transcription on the control-gene frequency (FRQ) under day-light conditions, which drives the expression of VVD-LOV and governs the negative feedback loop onto the circadian clock.[12][13] By contrast, the role of VVD-LOV is mainly modulatory and does not directly affect FRQ.[11][14] Finally, LOV domains have also been found to control gene expression through DNA binding and to be involved in redox-dependent regulation, like e.g. in the bacterium Rhodobacter sphaeroides.[15][16] Notably, LOV-based optogenetic tools have been gaining wide popularity in recent years to control a myriad of cellular events, including cell motility,[17] subcellular organelle distribution,[18] formation of membrane contact sites,[19] and protein degradation.[20]

See also

References

  1. Edmunds, L. N. J. (1988). Cellular and Molecular Bases of Biological Clocks: Models and Mechanisms for Circadian Timekeeping. New York: Springer Verlag.
  2. Peter, Emanuel; Dick, Bernhard; Baeurle, Stephan A. (2010). "Mechanism of signal transduction of the LOV2-Jα photosensor from Avena sativa". Nature Communications. 1 (8): 122. PMID 21081920. doi:10.1038/ncomms1121.
  3. Peter, Emanuel; Dick, Bernhard; Baeurle, Stephan A. (2012). "A novel computer simulation method for simulating the multiscale transduction dynamics of signal proteins". The Journal of Chemical Physics. 136 (12): 124112. PMID 22462840. doi:10.1063/1.3697370.
  4. Hegemann, P. (2008). "Algal sensory photoreceptors". Annual Review of Plant Biology. 59: 167–89. PMID 18444900. doi:10.1146/annurev.arplant.59.032607.092847.
  5. Christie, J. M. (2007). "Phototropin blue-light receptors". Annual Review of Plant Biology. 58: 21–45. PMID 17067285. doi:10.1146/annurev.arplant.58.032806.103951.
  6. Briggs, W. R. (2007). "The LOV domain: A chromophore module servicing multiple photoreceptors". Journal of Biomedical Science. 14 (4): 499–504. PMID 17380429. doi:10.1007/s11373-007-9162-6.
  7. Kottke, Tilman; Hegemann, Peter; Dick, Bernhard; Heberle, Joachim (2006). "The photochemistry of the light-, oxygen-, and voltage-sensitive domains in the algal blue light receptor phot". Biopolymers. 82 (4): 373–8. PMID 16552739. doi:10.1002/bip.20510.
  8. Jones, M. A.; Feeney, K. A.; Kelly, S. M.; Christie, J. M. (2007). "Mutational analysis of phototropin 1 provides insights into the mechanism underlying LOV2 signal transmission". Journal of Biological Chemistry. 282 (9): 6405–14. PMID 17164248. doi:10.1074/jbc.M605969200.
  9. Matsuoka, D.; Tokutomi, S. (2005). "Blue light-regulated molecular switch of Ser/Thr kinase in phototropin". Proceedings of the National Academy of Sciences of the United States of America. 102 (37): 13337–42. PMC 1198998Freely accessible. PMID 16150710. doi:10.1073/pnas.0506402102.
  10. Peter, Emanuel; Dick, Bernhard; Baeurle, Stephan A. (2012). "Illuminating the early signaling pathway of a fungal light-oxygen-voltage photoreceptor". Proteins: Structure, Function, and Bioinformatics. 80 (2): 471–481. doi:10.1002/prot.23213.
  11. 1 2 Heintzen, C.; Loros, J. J.; Dunlap, J. C. (2001). "The PAS protein VIVID defines a clock-associated feedback loop that represses light input, modulates gating, and regulates clock resetting". Cell. 104 (3): 453–64. PMID 11239402. doi:10.1016/s0092-8674(01)00232-x.
  12. 1 2 Lee, K.; Dunlap, J. C.; Loros, J. J. (2003). "Roles for WHITE COLLAR-1 in circadian and general photoperception in Neurospora crassa". Genetics. 163 (1): 103–14. PMC 1462414Freely accessible. PMID 12586700.
  13. Gardner, G. F.; Feldman, J. F. (1980). "The frq locus in Neurospora crassa: A key element in circadian clock organization". Genetics. 96 (4): 877–86. PMC 1219306Freely accessible. PMID 6455327.
  14. Hunt, S. M.; Thompson, S.; Elvin, M.; Heintzen, C. (2010). "VIVID interacts with the WHITE COLLAR complex and FREQUENCY-interacting RNA helicase to alter light and clock responses in Neurospora". Proceedings of the National Academy of Sciences of the United States of America. 107 (38): 16709–14. PMC 2944716Freely accessible. PMID 20807745. doi:10.1073/pnas.1009474107.
  15. Conrad, Karen S.; Bilwes, Alexandrine M.; Crane, Brian R. (2013). "Light-Induced Subunit Dissociation by a Light–Oxygen–Voltage Domain Photoreceptor from Rhodobacter sphaeroides". Biochemistry. 52 (2): 378–91. PMC 3582384Freely accessible. PMID 23252338. doi:10.1021/bi3015373.
  16. Metz, S.; Jager, A.; Klug, G. (2011). "Role of a short light, oxygen, voltage (LOV) domain protein in blue light- and singlet oxygen-dependent gene regulation in Rhodobacter sphaeroides". Microbiology. 158 (2): 368–379. PMID 22053008. doi:10.1099/mic.0.054700-0.
  17. Wu, Yi I.; Frey, Daniel; Lungu, Oana I.; Jaehrig, Angelika; Schlichting, Ilme; Kuhlman, Brian; Hahn, Klaus M. (2009-01-01). "A genetically encoded photoactivatable Rac controls the motility of living cells". Nature. 461 (7260): 104–8. PMC 2766670Freely accessible. PMID 19693014. doi:10.1038/nature08241.
  18. van Bergeijk, Petra; Adrian, Max; Hoogenraad, Casper C.; Kapitein, Lukas C. (2015-01-01). "Optogenetic control of organelle transport and positioning". Nature. 518 (7537): 111–4. PMC 5063096Freely accessible. PMID 25561173. doi:10.1038/nature14128.
  19. Jing, Ji; He, Lian; Sun, Aomin; Quintana, Ariel; Ding, Yuehe; Ma, Guolin; Tan, Peng; Liang, Xiaowen; Zheng, Xiaolu (2015-01-01). "Proteomic mapping of ER–PM junctions identifies STIMATE as a regulator of Ca2+ influx". Nature Cell Biology. 17 (10): 1339–47. PMC 4589512Freely accessible. PMID 26322679. doi:10.1038/ncb3234.
  20. Renicke, Christian; Schuster, Daniel; Usherenko, Svetlana; Essen, Lars-Oliver; Taxis, Christof (2013). "A LOV2 Domain-Based Optogenetic Tool to Control Protein Degradation and Cellular Function". Chemistry & Biology. 20 (4): 619–626. ISSN 1074-5521. PMID 23601651. doi:10.1016/j.chembiol.2013.03.005.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.