Leontief utilities

In economics and consumer theory, a Leontief utility function is a function of the form:

.

where:

This form of utility function was first conceptualized by Wassily Leontief.

Examples

Leontief utility functions represent complementary goods. For example:

Properties

A consumer with a leontief utility function has the following properties:

Competitive equilibrium

Since Leontief utilities are not strictly convex, they do not satisfy the requirements of the Arrow–Debreu model for existence of a competitive equilibrium. Indeed, a Leontief economy is not guaranteed to have a competitive equilibrium. There are restricted families of Leontief economies that do have a competitive equilibrium.

There is a reduction from the problem of finding a Nash equilibrium in a bimatrix game to the problem of finding a competitive equilibrium in a Leontief economy.[3] This has several implications:

Moreover, the Leontief market exchange problem does not have a fully polynomial-time approximation scheme, unless PPAD ⊆ P. [4]

On the other hand, there are algorithms for finding an approximate equilibrium for some special Leontief economies.[3][5]

References

  1. "Intermediate Micro Lecture Notes" (PDF). Yale University. 21 October 2013. Retrieved 21 October 2013.
  2. Greinecker, Michael (2015-05-11). "Perfect complements have to be normal goods". Retrieved 17 December 2015.
  3. 1 2 Codenotti, Bruno; Saberi, Amin; Varadarajan, Kasturi; Ye, Yinyu (2006). "Leontief economies encode nonzero sum two-player games". Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm - SODA '06. p. 659. ISBN 0898716055. doi:10.1145/1109557.1109629.
  4. Huang, Li-Sha; Teng, Shang-Hua (2007). "On the Approximation and Smoothed Complexity of Leontief Market Equilibria". Frontiers in Algorithmics. Lecture Notes in Computer Science. 4613. p. 96. ISBN 978-3-540-73813-8. doi:10.1007/978-3-540-73814-5_9.
  5. Codenotti, Bruno; Varadarajan, Kasturi (2004). "Efficient Computation of Equilibrium Prices for Markets with Leontief Utilities". Automata, Languages and Programming. Lecture Notes in Computer Science. 3142. p. 371. ISBN 978-3-540-22849-3. doi:10.1007/978-3-540-27836-8_33.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.