Intrinsic metric

In the mathematical study of metric spaces, one can consider the arclength of paths in the space. If two points are at a given distance from each other, it is natural to expect that one should be able to get from the first point to the second along a path whose arclength is equal to (or very close to) that distance. The distance between two points of a metric space relative to the intrinsic metric is defined as the infimum of the lengths of all paths from the first point to the second. A metric space is a length metric space if the intrinsic metric agrees with the original metric of the space.

Definitions

Let be a metric space, i.e., is a collection of points (such as all of the points in the plane, or all points on the circle) and is a function that provides us with the distance between points . We define a new metric on , known as the induced intrinsic metric, as follows: is the infimum of the lengths of all paths from to .

Here, a path from to is a continuous map

with and . The length of such a path is defined as explained for rectifiable curves. We set if there is no path of finite length from to . If

for all points and in , we say that is a length space or a path metric space and the metric is intrinsic.

We say that the metric has approximate midpoints if for any and any pair of points and in there exists in such that and are both smaller than

.

Examples

Properties

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.