Measurable function

In mathematics and in particular measure theory, a measurable function is a function between two measurable spaces such that the preimage of any measurable set is measurable, analogously to the definition that a function between topological spaces is continuous if the preimage of each open set is open. In real analysis, measurable functions are used in the definition of the Lebesgue integral. In probability theory, a measurable function on a probability space is known as a random variable.

Formal definition

Let and be measurable spaces, meaning that and are sets equipped with respective -algebras and . A function is said to be measurable if the preimage of under is in for every ; i.e.

If is a measurable function, we will write

to emphasize the dependency on the -algebras and .

Term usage variations

The choice of -algebras in the definition above is sometimes implicit and left up to the context. For example, for , , or other topological space, the Borel algebra (containing all the open sets) is a common choice. Some authors define measurable functions as exclusively real-valued ones with respect to the Borel algebra.[1]

If the values of the function lie in an infinite-dimensional vector space, other non-equivalent definitions of measurability, such as weak measurability and Bochner measurability, exist.

Notable classes of measurable functions

Properties of measurable functions

Non-measurable functions

Real-valued functions encountered in applications tend to be measurable; however, it is not difficult to find non-measurable functions.

See also

Notes

  1. 1 2 3 4 Strichartz, Robert (2000). The Way of Analysis. Jones and Bartlett. ISBN 0-7637-1497-6.
  2. Carothers, N. L. (2000). Real Analysis. Cambridge University Press. ISBN 0-521-49756-6.
  3. Folland, Gerald B. (1999). Real Analysis: Modern Techniques and their Applications. Wiley. ISBN 0-471-31716-0.
  4. Royden, H. L. (1988). Real Analysis. Prentice Hall. ISBN 0-02-404151-3.
  5. Dudley, R. M. (2002). Real Analysis and Probability (2 ed.). Cambridge University Press. ISBN 0-521-00754-2.
  6. Aliprantis, Charalambos D.; Border, Kim C. (2006). Infinite Dimensional Analysis, A Hitchhiker’s Guide (3 ed.). Springer. ISBN 978-3-540-29587-7.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.