Landweber exact functor theorem

In mathematics, the Landweber exact functor theorem, named after Peter Landweber, is a theorem in algebraic topology. It is known that a complex orientation of a homology theory leads to a formal group law. The Landweber exact functor theorem (or LEFT for short) can be seen as a method to reverse this process: it constructs a homology theory out of a formal group law.

Statement

The coefficient ring of complex cobordism is , where the degree of is 2i. This is isomorphic to the graded Lazard ring . This means that giving a formal group law F (of degree 2) over a graded ring is equivalent to giving a graded ring morphism . Multiplication by an integer n >0 is defined inductively as a power series, by

and

Let now F be a formal group law over a ring . Define for a topological space X

Here gets its -algebra structure via F. The question is: is E a homology theory? It is obviously a homotopy invariant functor, which fulfills excision. The problem is that tensoring in general does not preserve exact sequences. One could demand that is flat over , but that would be too strong in practice. Peter Landweber found another criterion:

Theorem (Landweber exact functor theorem)
For every prime p, there are elements such that we have the following: Suppose that is a graded -module and the sequence is regular for M, for every p and n. Then
is a homology theory on CW-complexes.

In particular, every formal group law F over a ring R yields a module over since we get via F a ring morphism .

Remarks

Examples

The archetypical and first known (non-trivial) example is complex K-theory K. Complex K-theory is complex oriented and has as formal group law . The corresponding morphism is also known as the Todd genus. We have then an isomorphism

called the ConnerFloyd isomorphism.

While complex K-theory was constructed before by geometric means, many homology theories were first constructed via the Landweber exact functor theorem. This includes elliptic homology, the JohnsonWilson theories and the Lubin–Tate spectra .

While homology with rational coefficients is Landweber exact, homology with integer coefficients is not Landweber exact. Furthermore, Morava K-theory K(n) is not Landweber exact.

Modern reformulation

A module M over is the same as a quasi-coherent sheaf over , where L is the Lazard ring. If , then M has the extra datum of a coaction. A coaction on the ring level corresponds to that is an equivariant sheaf with respect to an action of an affine group scheme G. It is a theorem of Quillen that and assigns to every ring R the group of power series

.

It acts on the set of formal group laws via

.

These are just the coordinate changes of formal group laws. Therefore, one can identify the stack quotient with the stack of (1-dimensional) formal groups and defines a quasi-coherent sheaf over this stack. Now it is quite easy to see that it suffices that M defines a quasi-coherent sheaf which is flat over in order that is a homology theory. The Landweber exactness theorem can then be interpreted as a flatness criterion for (see Lurie 2010).

Refinements to -ring spectra

While the LEFT is known to produce (homotopy) ring spectra out of , it is a much more delicate question to understand when these spectra are actually -ring spectra. As of 2010, the best progress was made by Jacob Lurie. If X is an algebraic stack and a flat map of stacks, the discussion above shows that we get a presheaf of (homotopy) ring spectra on X. If this map factors over (the stack of 1-dimensional p-divisible groups of height n) and the map is etale, then this presheaf can be refined to a sheaf of -ring spectra (see Goerss). This theorem is important for the construction of topological modular forms.

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.